Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 13788, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062098

ABSTRACT

Cu(In,Ga)Se2 (CIGS) is presently the most efficient thin-film photovoltaic technology with efficiencies exceeding 22%. An important factor impacting the efficiency is metastability, where material changes occur over timescales of up to weeks during light exposure. A previously proposed (V Se -V Cu ) divacancy model presents a widely accepted explanation. We present experimental evidence for the optically induced metastability transition and expand the divacancy model with first-principles calculations. Using photoluminescence excitation spectroscopy, we identify a sub-bandgap optical transition that severely deteriorates the carrier lifetime. This is in accordance with the expanded divacancy model, which predicts that states below the conduction band are responsible for the metastability change. We determine the density-capture cross-section product of the induced lifetime-limiting states and evaluate their impact on device performance. The experimental and theoretical findings presented can allow assessment of metastability characteristics of leading thin-film photovoltaic technologies.

2.
Rev Sci Instrum ; 86(1): 013907, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25638097

ABSTRACT

Fiber-fed time-resolved photoluminescence is demonstrated as a tool for immediate process feedback after deposition of the absorber layer for CuInxGa(1-x)Se2 and Cu2ZnSnSe4 photovoltaic devices. The technique uses a simplified configuration compared to typical laboratory time-resolved photoluminescence in the delivery of the exciting beam, signal collection, and electronic components. Correlation of instrument output with completed device efficiency is demonstrated over a large sample set. The extraction of the instrument figure of merit, depending on both the initial luminescence intensity and its time decay, is explained and justified. Limitations in the prediction of device efficiency by this method, including surface effect, are demonstrated and discussed.

3.
Rev Sci Instrum ; 83(8): 083702, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22938298

ABSTRACT

We present a near-field scanning microwave microscope (NSMM) that has been configured for imaging photovoltaic samples. Our system incorporates a Pt-Ir tip inserted into an open-ended coaxial cable to form a weakly coupled resonator, allowing the microwave reflection S(11) signal to be measured across a sample over a frequency range of 1 GHz - 5 GHz. A phase-tuning circuit increased impedance-measurement sensitivity by allowing for tuning of the S(11) minimum down to -78 dBm. A bias-T and preamplifier enabled simultaneous, non-contact measurement of the DC tip-sample current, and a tuning fork feedback system provided simultaneous topographic data. Light-free tuning fork feedback provided characterization of photovoltaic samples both in the dark and under illumination at 405 nm. NSMM measurements were obtained on an inhomogeneous, third-generation Cu(In,Ga)Se(2) (CIGS) sample. The S(11) and DC current features were found to spatially broaden around grain boundaries with the sample under illumination. The broadening is attributed to optically generated charge that becomes trapped and changes the local depletion of the grain boundaries, thereby modifying the local capacitance. Imaging provided by the NSMM offers a new RF methodology to resolve and characterize nanoscale electrical features in photovoltaic materials and devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...