Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Colloids Surf B Biointerfaces ; 239: 113934, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729020

ABSTRACT

Today, diabetes mellitus is one of the most common diseases that affects the population on a worldwide scale. Patients suffering from this disease are required to control their blood-glucose levels several times a day through invasive methods such as piercing their fingers. Our NaGdF4: 5% Er3+, 3% Nd3+ nanoparticles demonstrate a remarkable ability to detect D-glucose levels by analysing alterations in their red-to-green ratio, since this sensitivity arises from the interaction between the nanoparticles and the OH groups present in the D-glucose molecules, resulting in discernible changes in the emission of the green and red bands. These luminescent sensors were implemented and tested on paper substrates, offering a portable, low-cost and enzyme-free solution for D-glucose detection in aqueous solutions with a limit of detection of 22 mg/dL. With this, our study contributes to the development of non-invasive D-glucose sensors, holding promising implications for managing diabetes and improving overall patient well-being with possible future applications in D-glucose sensing through tear fluid.


Subject(s)
Glucose , Metals, Rare Earth , Nanoparticles , Paper , Metals, Rare Earth/chemistry , Glucose/analysis , Glucose/chemistry , Nanoparticles/chemistry , Biosensing Techniques/methods , Humans , Blood Glucose/analysis , Limit of Detection
2.
J Chem Theory Comput ; 19(23): 8610-8623, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37974305

ABSTRACT

In this report, we have used the DFT + U + V approach, an extension of the DFT + U approach that takes into account both on-site and intersite interactions, to simulate structural, magnetic, and electronic properties together with the Fe and O K-edge XAS spectra of Fe3O4 above the Verwey temperature (Tv). Moreover, we compared the simulated XAS spectra with experimental XAS data. We examined both orthogonalized and nonorthogonalized atomic orbital projectors and compared DFT + U + V to DFT, DFT + U, and HSE as a hybrid functional. It is noteworthy that, despite the widespread use of the same Hubbard U value for Feoct and Fetet at the DFT + U level in the literature, the HP code identified two distinct values for them using the Hubbard approaches (DFT + U and DFT + U + V). The resulting Hubbard U and V parameters are strongly dependent on the chosen orbital projectors. This study demonstrates how DFT + U + V can improve the structural, magnetic, and electronic properties of Fe3O4 compared to approximate DFT and DFT + U. In this context, DFT + U + V supports the half-metallic character of the bulk crystal Fe3O4 above Tv, since the Fermi level is found in the t2g band with a Feoct down-spin. Thus, the observations in the current study emphasize the significance of intersite interactions in the theoretical analysis of Fe3O4 above the Tv.

3.
Nanomaterials (Basel) ; 13(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37999283

ABSTRACT

In the rapidly emerging field of biomedical applications, multifunctional nanoparticles, especially those containing magnetic and plasmonic components, have gained significant attention due to their combined properties. These hybrid systems, often composed of iron oxide and gold, provide both magnetic and optical functionalities and offer promising avenues for applications in multimodal bioimaging, hyperthermal therapies, and magnetically driven selective delivery. This paper focuses on the implementation of advanced characterization methods, comparing statistical analyses of individual multifunctional particle properties with macroscopic properties as a way of fine-tuning synthetic methodologies for their fabrication methods. Special emphasis is placed on the size-dependent properties, biocompatibility, and challenges that can arise from this versatile nanometric system. In order to ensure the quality and applicability of these particles, various novel methods for characterizing the magnetic gold particles, including the analysis of their morphology, optical response, and magnetic response, are also discussed, with the overall goal of optimizing the fabrication of this complex system and thus enhancing its potential as a preferred diagnostic agent.

4.
Nanomaterials (Basel) ; 13(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37686909

ABSTRACT

Plasmonic nanoparticles have a wide range of applications in science and industry. Despite the numerous synthesis methods reported in the literature over the last decades, achieving precise control over the size and shape of large nanoparticle populations remains a challenge. Since variations in size and shape significantly affect the plasmonic properties of nanoparticles, accurate metrological techniques to characterize their morphological features are essential. Here, we present a novel spectrophotometric method, called Amplitude-Resolved Single Particle Spectrophotometry, that can measure the individual sizes of thousands of particles with nanometric accuracy in just a few minutes. This new method, based on the measurement of the scattering amplitude of each nanoparticle, overcomes some of the limitations observed in previous works and theoretically allows the characterization of nanoparticles of any size with a simple extra calibration step. As proof of concept, we characterized thousands of spherical nanoparticles of different sizes. This new method shows excellent accuracy, with less than a 3% discrepancy in direct comparison with transmission electron microscopy. Although the effectiveness of this method has been demonstrated with spherical nanoparticles, its real strength lies in its adaptability to more complex geometries by using an alternative analytical method to the one described here.

5.
Int J Mol Sci ; 24(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37445773

ABSTRACT

The design and engineering of antibacterial materials are key for preventing bacterial adherence and proliferation in biomedical and household instruments. Silver nanoparticles (AgNPs) and chitosan (CHI) are broad-spectrum antibacterial materials with different properties whose combined application is currently under optimization. This study proposes the formation of antibacterial films with AgNPs embedded in carboxymethylcellulose/chitosan multilayers by the layer-by-layer (LbL) method. The films were deposited onto nanoporous silicon (nPSi), an ideal platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. We focused on two alternative multilayer deposition processes: cyclic dip coating (CDC) and cyclic spin coating (CSC). The physicochemical properties of the films were the subject of microscopic, microstructural, and surface-interface analyses. The antibacterial activity of each film was investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria strains as model microorganisms. According to the findings, the CDC technique produced multilayer films with higher antibacterial activity for both bacteria compared to the CSC method. Bacteria adhesion inhibition was observed from only three cycles. The developed AgNPs-multilayer composite film offers advantageous antibacterial properties for biomedical applications.


Subject(s)
Chitosan , Metal Nanoparticles , Nanopores , Chitosan/chemistry , Silver/chemistry , Carboxymethylcellulose Sodium , Silicon , Layer-by-Layer Nanoparticles , Bacterial Adhesion , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
ACS Appl Mater Interfaces ; 15(27): 32667-32677, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37390496

ABSTRACT

Rare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging. Furthermore, the strong temperature dependence of the PL properties of some of these RENPs makes remote thermal imaging possible. This is the case of neodymium and ytterbium co-doped NPs that have been used as thermal reporters for in vivo diagnosis of, for instance, inflammatory processes. However, the lack of knowledge about how the chemical composition and architecture of these NPs influence their thermal sensitivity impedes further optimization. To shed light on this, we have systematically studied their emission intensity, PL decay time curves, absolute PL quantum yield, and thermal sensitivity as a function of the core chemical composition and size, active-shell, and outer-inert-shell thicknesses. The results revealed the crucial contribution of each of these factors in optimizing the NP thermal sensitivity. An optimal active shell thickness of around 2 nm and an outer inert shell of 3.5 nm maximize the PL lifetime and the thermal response of the NPs due to the competition between the temperature-dependent back energy transfer, the surface quenching effects, and the confinement of active ions in a thin layer. These findings pave the way for a rational design of RENPs with optimal thermal sensitivity.

7.
Pharmaceutics ; 15(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36678924

ABSTRACT

In the early 2000s, a method for cross-linking cyclodextrins (CDs) with citric acid (CTR) was developed. This method was nontoxic, environmentally friendly, and inexpensive compared to the others previously proposed in the literature. Since then, the CD/CTR biopolymers have been widely used as a coating on implants and other materials for biomedical applications. The present review aims to cover the chemical properties of CDs, the synthesis routes of CD/CTR, and their applications as drug-delivery systems when coated on different substrates. Likewise, the molecules released and other pharmaceutical aspects involved are addressed. Moreover, the different methods of pretreatment applied on the substrates before the in situ polymerization of CD/CTR are also reviewed as a key element in the final functionality. This process is not trivial because it depends on the surface chemistry, geometry, and physical properties of the material to be coated. The biocompatibility of the polymer was also highlighted. Finally, the mechanisms of release generated in the CD/CTR coatings were analyzed, including the mathematical model of Korsmeyer-Peppas, which has been dominantly used to explain the release kinetics of drug-delivery systems based on these biopolymers. The flexibility of CD/CTR to host a wide variety of drugs, of the in situ polymerization to integrate with diverse implantable materials, and the controllable release kinetics provide a set of advantages, thereby ensuring a wide range of future uses.

8.
Colloids Surf B Biointerfaces ; 222: 113136, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36641873

ABSTRACT

Studies of virus adsorption on surfaces with optimized properties have attracted a lot of interest, mainly due to the influence of the surface in the retention, orientation and stability of the viral capsids. Besides, viruses in whole or in parts can be used as cages or vectors in different areas, such as biomedicine and materials science. A key requirement for virus nanocage application is their physical properties, i.e. their mechanical response and the distribution of surface charge, which determine virus-substrate interactions and stability. In the present work we show two examples of viruses exhibiting strong surface interactions on homogeneous hydrophobic surfaces. The surfaces were prepared by titanate assisted organosilanization, a sol-gel spin coating process, followed by a mild annealing step. We show by surface and interface spectroscopies that the process allows trapping triethoxy-octylsilane (OCTS) molecules, exhibiting a hydrophobic alkane rich surface finishing. Furthermore, the surfaces remain flat and behave as more efficient sorptive surfaces for virus particles than mica or graphite (HOPG). Also, we determine by atomic force microscopy (AFM) the mechanical properties of two types of viruses (human adenovirus and reovirus) and compare the results obtained on the OCTS functionalized surfaces with those obtained on mica and HOPG. Finally, the TIPT+OCTS surfaces were validated as platforms for the morphological and mechanical characterization of virus particles by using adenovirus as initial model and using HOPG and mica as standard control surfaces. Then, the same characteristics were determined on reovirus using TIPT+OCTS and HOPG, as an original contribution to the catalogue of physical properties of viral particles.


Subject(s)
Alkanes , Aluminum Silicates , Humans , Spectrum Analysis , Adsorption , Microscopy, Atomic Force/methods , Surface Properties
9.
Phys Chem Chem Phys ; 25(1): 494-508, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477071

ABSTRACT

An application of mechanical energy was explored as a new non-thermal method to drive H2 emission from undoped sodium alanate at room temperature. It was found that mild rubbing of NaAlH4 pellets under vacuum led to intensive and almost instantaneous gas emission. The dominating species in the emitted gases was H2 (>99%). Traces of mono- and polyalanes, NaAlH4 vapours, CO2 and other non-identified gases were registered. H2 emission involved several first-order processes, whose characteristic time constants ranged widely from 0.6 to 465 s. None of the dehydrogenation reactions could be connected to either the thermal effect of friction or the direct coupling of mechanical forces to the energy landscape of chemical reactions. In turn, it was suggested that the tribochemical reactions can be triggered by plastic deformation and shearing. A linked diffusion-wear model of NaAlH4 triboinduced dehydrogenation, which consistently explains all empirical findings, was put forward.

10.
Sci Rep ; 12(1): 17231, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36280772

ABSTRACT

Plasmonic nanoparticles are widely used in multiple scientific and industrial applications. Although many synthesis methods have been reported in the literature throughout the last decade, controlling the size and shape of large populations still remains as a challenge. As size and shape variations have a strong impact in their plasmonic properties, the need to have metrological techniques to accurately characterize their morphological features is peremptory. We present a new optical method referred as Dark-Field Single Particle Spectrophotometry which is able to measure the individual sizes of thousands of particles with nanometric accuracy in just a couple of minutes. Our method also features an easy sample preparation, a straightforward experimental setup inspired on a customized optical microscope, and a measurement protocol simple enough to be carried out by untrained technicians. As a proof of concept, thousands of spherical nanoparticles of different sizes have been measured, and after a direct comparison with metrological gold standard electron microscopy, a discrepancy of 3% has been attested. Although its feasibility has been demonstrated on spherical nanoparticles, the true strengthness of the method is that it can be generalized also to nanoparticles with arbitrary shapes and geometries, thus representing an advantageous alternative to the gold-standard electron microscopy.


Subject(s)
Metal Nanoparticles , Spectrophotometry , Microscopy, Electron , Particle Size
11.
Materials (Basel) ; 15(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36143549

ABSTRACT

The layer-structured monoclinic Li2MnO3 is a key material, mainly due to its role in Li-ion batteries and as a precursor for adsorbent used in lithium recovery from aqueous solutions. In the present work, we used first-principles calculations based on density functional theory (DFT) to study the crystal structure, optical phonon frequencies, infra-red (IR), and Raman active modes and compared the results with experimental data. First, Li2MnO3 powder was synthesized by the hydrothermal method and successively characterized by XRD, TEM, FTIR, and Raman spectroscopy. Secondly, by using Local Density Approximation (LDA), we carried out a DFT study of the crystal structure and electronic properties of Li2MnO3. Finally, we calculated the vibrational properties using Density Functional Perturbation Theory (DFPT). Our results show that simulated IR and Raman spectra agree well with the observed phonon structure. Additionally, the IR and Raman theoretical spectra show similar features compared to the experimental ones. This research is useful in investigations involving the physicochemical characterization of Li2MnO3 material.

12.
Dalton Trans ; 50(31): 10765-10778, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34286776

ABSTRACT

Lithium manganese oxides (LMOs) are key materials due to their role in Li-ion batteries and lithium recovery from aqueous lithium resources. In the present work, we investigated the effect of the crystallization temperature on the formation by hydrothermal synthesis of LMO nanocomposites with high Li/Mn ratios. It is demonstrated that LMOs with a high Li/Mn ratio can be formed by systematically favoring the lithium-rich layered monoclinic phase (Li2MnO3) in a mixture of monoclinic and spinel crystalline phases. LMO nanocomposites have been characterized in terms of morphology, size, crystallinity, chemical composition and surface properties. Moreover, lithium adsorption experiments were conducted using acid-treated LMOs (HMOs) to evaluate the functionality of the nanocomposites as lithium adsorbent materials in a LiCl buffer solution. This study spotlights the structural, compositional, and functional properties of different LMO nanocomposites obtained by the hydrothermal method using the same Li and Mn precursor compounds at slightly different crystallization temperatures. According to our knowledge, this is the first report of the successful application of the lithium-rich Li2MnO3 phase in lithium manganese oxide nanocomposites as lithium adsorbent materials. Therefore, specific LMO nanocomposites with controlled amounts of the layered phase can be engineered to optimize lithium recovery from aqueous lithium resources.

13.
Nanotechnology ; 31(36): 365704, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32460262

ABSTRACT

Composites of nanostructured porous silicon and silver (nPSi-Ag) have attracted great attention due to the wide spectrum of applications in fields such as microelectronics, photonics, photocatalysis and bioengineering, Among the different methods for the fabrication of nanostructured composite materials, dip and spin-coating are simple, versatile, and cost-effective bottom-up technologies to provide functional coatings. In that sense, we aimed at fabricating nPSi-Ag composite layers. Using nPSi layers with pore diameter of 30 nm, two types of thin-film techniques were systematically compared: cyclic dip-coating (CDC) and cyclic spin-coating (CSC). CDC technique formed a mix of granular and flake-like structures of metallic Ag, and CSC method favored the synthesis of flake-like structures with Ag and Ag2O phases. Flakes obtained by CDC and CSC presented a width of 110 nm and 70 nm, respectively. Particles also showed a nanostructure surface with features around 25 nm. According to the results of EDX and RBS, integration of Ag into nPSi was better achieved using the CDC technique. SERS peaks related to chitosan adsorbed on Ag nanostructures were enhanced, especially in the nPSi-Ag composite layers fabricated by CSC compared to CDC, which was confirmed by FTDT simulations. These results show that CDC and CSC produce different nPSi-Ag composite layers for potential applications in bioengineering and photonics.

14.
Materials (Basel) ; 13(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164146

ABSTRACT

Sequential plasma processes combined with specific lithographic methods allow for the fabrication of advanced material structures. In the present work, we used self-assembled colloidal monolayers as lithographic structures for the conformation of ordered Si submicrometer pillars by reactive ion etching. We explored different discharge conditions to optimize the Si pillar geometry. Selected structures were further decorated with gold by conventional sputtering, prior to colloidal monolayer lift-off. The resulting structures consist of a gold crown, that is, a cylindrical coating on the edge of the Si pillar and a cavity on top. We analysed the Au structures in terms of electronic properties by using X-ray absorption spectroscopy (XAS) prior to and after post-processing with thermal annealing at 300 °C and/or interaction with a gold etchant solution (KI). The angular dependent analysis of the plasmonic properties was studied with Fourier transformed UV-vis measurements. Certain conditions were selected to perform a surface enhanced Raman spectroscopy (SERS) evaluation of these platforms with two model dyes, prior to confirming the potential interest for a well-resolved analysis of filtered blood plasma.

15.
Nanomaterials (Basel) ; 9(7)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315233

ABSTRACT

Photonic and plasmonic systems have been intensively studied as an effective means to modify and enhance the electromagnetic field. In recent years hybrid plasmonic-photonic systems have been investigated as a promising solution for enhancing light-matter interaction. In the present work we present a hybrid structure obtained by growing a plasmonic 2D nanograting on top of a porous silicon distributed Bragg reflector. Particular attention has been devoted to the morphological characterization of these systems. Electron microscopy images allowed us to determine the geometrical parameters of the structure. The matching of the optical response of both components has been studied. Results indicate an interaction between the plasmonic and the photonic parts of the system, which results in a localization of the electric field profile.

16.
Biointerphases ; 14(1): 011001, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30691269

ABSTRACT

The organization of virus-like particles (VLPs) on surfaces is a relevant matter for both fundamental and biomedical sciences. In this work, the authors have tailored surfaces with different surface tension components aiming at finding a relationship with the affinity of the different geometric/surface features of icosahedral P22 VLPs. The surfaces have been prepared by titanate assisted organosilanization with glycidyloxy, amino, and perfluoro silanes. Vibrational and photoelectron spectroscopies have allowed identifying the different functional groups of the organosilanes on the surfaces. Atomic force microscopy (AFM) showed that, irrespective of the organosilane used, the final root mean square roughness remains below 1 nm. Contact angle analyses confirm the effective formation of a set of surface chemistries exhibiting different balance among surface tension components. The study of the adsorption of P22 VLPs has involved the analysis of the dynamics of virus immobilization by fluorescence microscopy and the interpretation of the final VLP orientation by AFM. These analyses give rise to statistical distributions pointing to a higher affinity of VLPs toward perfluorinated surfaces, with a dominant fivefold conformation on this hydrophobic surface, but threefold and twofold symmetries dominating on hydrophilic surfaces. These results can be explained in terms of a reinforced hydrophobic interaction between the perfluorinated surface and the dominating hydrophobic residues present at the P22 pentons.


Subject(s)
Adsorption , Bacteriophage P22/metabolism , Silanes/metabolism , Virosomes/metabolism , Microscopy, Atomic Force , Spectrum Analysis
17.
Materials (Basel) ; 12(1)2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30609796

ABSTRACT

Porous silicon (PSi) is a versatile matrix with tailorable surface reactivity, which allows the processing of a range of multifunctional films and particles. The biomedical applications of PSi often require a surface capping with organic functionalities. This work shows that visible light can be used to catalyze the assembly of organosilanes on the PSi, as demonstrated with two organosilanes: aminopropyl-triethoxy-silane and perfluorodecyl-triethoxy-silane. We studied the process related to PSi films (PSiFs), which were characterized by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (ToF-SIMS) and field emission scanning electron microscopy (FESEM) before and after a plasma patterning process. The analyses confirmed the surface oxidation and the anchorage of the organosilane backbone. We further highlighted the surface analytical potential of 13C, 19F and 29Si solid-state NMR (SS-NMR) as compared to Fourier transformed infrared spectroscopy (FTIR) in the characterization of functionalized PSi particles (PSiPs). The reduced invasiveness of the organosilanization regarding the PSiPs morphology was confirmed using transmission electron microscopy (TEM) and FESEM. Relevantly, the results obtained on PSiPs complemented those obtained on PSiFs. SS-NMR suggests a number of siloxane bonds between the organosilane and the PSiPs, which does not reach levels of maximum heterogeneous condensation, while ToF-SIMS suggested a certain degree of organosilane polymerization. Additionally, differences among the carbons in the organic (non-hydrolyzable) functionalizing groups are identified, especially in the case of the perfluorodecyl group. The spectroscopic characterization was used to propose a mechanism for the visible light activation of the organosilane assembly, which is based on the initial photoactivated oxidation of the PSi matrix.

18.
Inorg Chem ; 57(16): 10090-10099, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30066565

ABSTRACT

Bi2Te3 is a well-studied material because of its thermoelectric properties and, recently, has also been studied as a topological insulator. However, it is only one of several compounds in the Bi-Te system. This work presents a study of the physical vapor transport growth of Bi-Te material focused on determining the growth conditions required to selectively obtain a desired phase of the Bi-Te system, i.e., Bi2Te3, BiTe, and Bi4Te3. Epitaxial films of these compounds were prepared on sapphire and silicon substrates. The results were verified by X-ray diffraction, Raman spectroscopy, and Rutherford backscattering spectrometry.

19.
ACS Biomater Sci Eng ; 2(11): 1976-1982, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-33440533

ABSTRACT

Amorphous carbon films exhibit attractive optical and surface properties. In this work, modified amorphous carbon films incorporating nitroxide groups (α-CNO) have been obtained by searching for a condensed analogue to classical soft antifouling materials. Thin films deposited by reactive magnetron sputtering in air discharges at varying power conditions were characterized by ellipsometry, atomic force microscopy, and water contact angle. Plasma power was observed to activate the densification and roughness of nanograined films. Most hydrophilic films deposited at 30 W exhibited the lowest refractive index, negligible optical absorption in the vis-IR, and presented a close to stoichiometric C2NO composition, as derived from X-ray photoelectron spectroscopy. Micropatterns prepared by photolithography validated the transparency-hydrophilicity of the α-CNO, as observed by water condensation contrast imaging. An albumin adsorption experiment evaluated through fluorescence revealed that α-CNO behaves as antifouling with respect to Si. Such thin antifouling films are of interest for the initiation of immobilization cascades in imaging surface plasmon resonance, where they have confirmed their antifouling contrast enhancement role. These results illustrate that the combination of a nanorough surface with nitroxide chemistry induces an antifouling behavior. In association with the optical transparency, the results invite the exploration of the bioengineering dimension of α-CNO films.

20.
Article in English | MEDLINE | ID: mdl-26029688

ABSTRACT

For over 20 years, nanostructured porous silicon (nanoPS) has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi) an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide, which is readily dissolved by body fluids. This paper reviews the evolution of the applications of PSi and nanoPS from photonics through biophotonics, to their use as cell scaffolds, whether as an implantable substitute biomaterial, mainly for bony and ophthalmological tissues, or as an in vitro cell conditioning support, especially for pluripotent cells. For any of these applications, PSi/nanoPS can be used directly after synthesis from Si wafers, upon appropriate surface modification processes, or as a composite biomaterial. Unedited studies of fluorescently active PSi structures for cell culture are brought to evidence the margin for new developments.

SELECTION OF CITATIONS
SEARCH DETAIL
...