Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(8): e0289680, 2023.
Article in English | MEDLINE | ID: mdl-37561782

ABSTRACT

The present study investigates the impact of explicit, reflective Nature of Science instruction on students' evolution acceptance, understanding of evolution as a theory, and understanding of Nature of Science in an introductory biology course. Results revealed similar improvement in evolution acceptance in both the treatment and control groups, but also that Nature of Science instruction had disproportionately large impacts on evolution acceptance for women and individuals who already had high acceptance. We also found evidence of relationships between understanding and acceptance of evolution and Nature of Science understanding, particularly the creativity aspect of Nature of Science. Together, these results suggest that targeted Nature of Science instruction can have differential impacts on students with particular characteristics, such as women and individuals with high acceptance, but also point to the need to consider additional interventions that can reach men and individuals with low acceptance.


Subject(s)
Biology , Students , Male , Humans , Female , Biology/education , Curriculum , Educational Measurement , Biological Evolution , Teaching
2.
Ann Bot ; 123(2): 247-261, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30032269

ABSTRACT

Background: Floral nectar is an important determinant of plant-pollinator interactions and an integral component of pollination syndromes, suggesting it is under pollinator-mediated selection. However, compared to floral display traits, we know little about the evolutionary ecology of nectar. Combining a literature review with a meta-analysis approach, we summarize the evidence for heritable variation in nectar traits and link this variation to pollinator response and plant fitness. We further review associations between nectar traits and floral signals and discuss them in the context of honest signalling and targets of selection. Scope: Although nectar is strongly influenced by environmental factors, heritable variation in nectar production rate has been documented in several populations (mean h2 = 0.31). Almost nothing is known about heritability of other nectar traits, such as sugar and amino acid concentrations. Only a handful of studies have quantified selection on nectar traits, and few find statistically significant selection. Pollinator responses to nectar traits indicate they may drive selection, but studies tying pollinator preferences to plant fitness are lacking. So far, only one study conclusively identified pollinators as selective agents on a nectar trait, and the role of microbes, herbivores, nectar robbers and abiotic factors in nectar evolution is largely hypothetical. Finally, there is a trend for positive correlations among floral cues and nectar traits, indicating honest signalling of rewards. Conclusions: Important progress can be made by studies that quantify current selection on nectar in natural populations, as well as experimental approaches that identify the target traits and selective agents involved. Signal-reward associations suggest that correlational selection may shape evolution of nectar traits, and studies exploring these more complex forms of natural selection are needed. Many questions about nectar evolution remain unanswered, making this a field ripe for future research.


Subject(s)
Biological Evolution , Plant Nectar/genetics , Selection, Genetic , Animals , Flowers/physiology , Genetic Variation , Plant Nectar/analysis , Quantitative Trait, Heritable
3.
Curr Opin Insect Sci ; 23: 70-80, 2017 10.
Article in English | MEDLINE | ID: mdl-29129286

ABSTRACT

Natural and managed ecosystems are undergoing rapid environmental change due to a growing human population and associated increases in industrial and agricultural activity. Global environmental change directly and indirectly impacts insect herbivores and pollinators. In this review, we highlight recent research examining how environmental change factors affect plant chemistry and, in turn, ecological interactions among plants, herbivores, and pollinators. Recent studies reveal the complex nature of understanding global change effects on plant secondary metabolites and plant-insect interactions. Nonetheless, these studies indicate that phytochemistry mediates insect responses to environmental change. Future research on the chemical ecology of plant-insect interactions will provide critical insight into the ecological effects of climate change and other anthropogenic disturbances. We recommend greater attention to investigations examining interactive effects of multiple environmental change factors in addition to chemically mediated plant-pollinator interactions, given limited research in these areas.


Subject(s)
Climate Change , Insecta/physiology , Plants/chemistry , Animals , Ecosystem , Herbivory/physiology , Plants/metabolism , Pollination
4.
Proc Biol Sci ; 282(1803): 20142471, 2015 Mar 22.
Article in English | MEDLINE | ID: mdl-25694627

ABSTRACT

The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities.


Subject(s)
Alkaloids , Bees/parasitology , Crithidia , Glycosides , Plant Nectar/chemistry , Terpenes , Anabasine , Animals , Bees/physiology , Disease Resistance , Host-Parasite Interactions , Secondary Metabolism
5.
Curr Opin Insect Sci ; 8: 41-46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-32846674

ABSTRACT

Floral chemistry mediates plant-pollinator interactions through floral scents and reward components. Although improved techniques have increased interest in studying floral volatiles and nectar chemistry, these two foci have generally been studied in isolation. The ecological functions of floral chemistry have been relatively well studied and focused on pollinator behaviour. While studies comparing chemistry between plant parts and across phylogenies are increasing, work on the evolution of floral chemistry and the importance of community context in mediating pollinator responses is lacking. Future research should concentrate on more holistic studies that include both signal and reward chemistry to understand the relative contribution of these complex and dynamic floral traits to the ecology and evolution of plants and their pollinators.

6.
J Agric Food Chem ; 62(30): 7335-44, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-24766254

ABSTRACT

The study of plant secondary chemistry has been essential in understanding plant consumption by herbivores. There is growing evidence that secondary compounds also occur in floral rewards, including nectar and pollen. Many pollinators are generalist nectar and pollen foragers and thus are exposed to an array of secondary compounds in their diet. This review documents secondary compounds in the nectar or pollen of poisonous rangeland plants of the western United States and the effects of these compounds on the behavior, performance, and survival of pollinators. Furthermore, the biochemical, physiological, and behavioral mechanisms by which pollinators cope with secondary compound consumption are discussed, drawing parallels between pollinators and herbivores. Finally, three avenues of future research on floral reward chemistry are proposed. Given that the majority of flowering plants require animals for pollination, understanding how floral reward chemistry affects pollinators has implications for plant reproduction in agricultural and rangeland habitats.


Subject(s)
Flowers/chemistry , Plants, Toxic/chemistry , Pollination , Animals , Bees , Birds , Ecosystem , Insecta , Plant Nectar/chemistry , Pollen/chemistry , Symbiosis , United States
7.
Ecol Lett ; 16(3): 399-408, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23237105

ABSTRACT

The majority of angiosperms are hermaphroditic with total fitness comprised of both male and female components of reproduction. However, most studies examining the effects of abiotic factors and species interactions on fitness have focussed on female reproduction, potentially biasing our understanding of the consequences of environmental factors on total fitness. Here, we use meta-analysis to test how environmental factors affect male function. We obtained 278 effect sizes from 96 studies that measured male function responses to manipulated environmental factors. We found significant effects of abiotic factors and species interactions on estimates of male function, with responses varying depending on environmental factor identity. Male and female responses were correlated for abiotic factor manipulations, but varied based on the type of species interaction (antagonistic or mutualistic). This suggests that measuring only female function may misrepresent whole-plant reproduction depending on context. Finally, we found differences amongst components of male function in response to environmental factors, suggesting that some male function estimates may fail to capture the effects of environmental factors on male fitness. Our results demonstrate the importance of incorporating male function into ecological and evolutionary studies to provide a more accurate understanding of the effects of environmental factors on total fitness.


Subject(s)
Ecosystem , Magnoliopsida/physiology , Pollen/physiology
8.
Oecologia ; 162(1): 81-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19711104

ABSTRACT

Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.


Subject(s)
Alkaloids/metabolism , Bees/parasitology , Crithidia/physiology , Host-Parasite Interactions , Plant Nectar/chemistry , Animals , Bees/physiology , Feeding Behavior
9.
FEMS Yeast Res ; 8(3): 499-508, 2008 May.
Article in English | MEDLINE | ID: mdl-18384364

ABSTRACT

Among many isolates that resulted from four independent surveys of yeasts associated with plants in Brazil, the USA, Portugal and Taiwan, we have characterized eighteen basidiomycetous strains, two of which were conspecific with the type strain of Rhodotorula acheniorum, whereas the remaining sixteen isolates appeared not to correspond to any previously described species. Microsatellite-PCR fingerprinting with primers M13 and (GTG)5 confirmed that the latter strains formed three genetically distinct groups. Each group was considered to represent a distinct species based on nucleotide sequences of the D1/D2 domains of the 26S rRNA gene and the internal transcribed spacer (ITS) region. Phylogenetic analyses of sequence data placed the putative novel species in a clade with R. acheniorum and the dimorphic smut fungus Farysia chardoniana. A novel anamorphic genus, Farysizyma, is created to accommodate the three undescribed species, which were named Farysizyma itapuensis, Farysizyma setubalensis and Farysizyma taiwaniana. A new combination, Farysizyma acheniorum, is proposed for R. acheniorum, which may represent the yeast-phase anamorph of Farysia thuemenii.


Subject(s)
Plants/microbiology , Ustilaginales/classification , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Ustilaginales/genetics
10.
Ecol Lett ; 10(5): 375-82, 2007 May.
Article in English | MEDLINE | ID: mdl-17498136

ABSTRACT

Secondary compounds may benefit plants by deterring herbivores, but the presence of these defensive chemicals in floral nectar may also deter beneficial pollinators. This trade-off between sexual reproduction and defense has received minimal study. We determined whether the pollinator-deterring effects of a nectar alkaloid found in the perennial vine Gelsemium sempervirens depend on ecological context (i.e. the availability of alternative nectar sources) by monitoring the behavioural response of captive bumblebees (Bombus impatiens, an important pollinator of G. sempervirens in nature) to nectar alkaloids in several ecologically relevant scenarios. Although alkaloids in floral nectar tended to deter visitation by bumblebees, the magnitude of that effect depended greatly on the availability and nectar properties of alternative flowers. Ecological context should thus be considered when assessing ecological costs of plant defense in terms of pollination services. We consider adaptive strategies that would enable plants to minimize pollinator deterrence because of defensive compounds in flowers.


Subject(s)
Alkaloids/pharmacology , Bees/physiology , Ecology , Flowers/chemistry , Pollen , Alkaloids/analysis , Animals , Species Specificity
11.
Antonie Van Leeuwenhoek ; 92(1): 37-42, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17205379

ABSTRACT

A new yeast species, Candida gelsemii, is described to accommodate three isolates recovered in Georgia, USA, from the toxic nectar of the Carolina jessamine (Gelsemium sempervirens). The species resembles other members of the Metschnikowiaceae clade that have been recovered from nectar, but differs in a number of morphological and physiological characteristics. Analysis of rDNA sequences places the new species well into the clade, but in a basal position with respect to a group of Metschnikowia and Candida species known to occur in association with nectars and bees, as well as marine invertebrates. The type is strain UWOPS 06-24.1(T) (CBS 10509(T), NRRL Y-48212(T).


Subject(s)
DNA, Ribosomal/genetics , Flowers/microbiology , Jasminum/microbiology , Yeasts/genetics , Cell Division/drug effects , Cellobiose/pharmacology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Galactose/pharmacology , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Species Specificity , Trehalose/pharmacology , Yeasts/classification , Yeasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...