Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Vaccine Immunol ; 13(1): 90-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16426005

ABSTRACT

The definition of antigens for the diagnosis of human and bovine tuberculosis is a research priority. If diagnosis is to be used alongside Mycobacterium bovis BCG-based vaccination regimens, it will be necessary to have reagents that allow the discrimination of infected and vaccinated animals. A list of 42 potential M. bovis-specific antigens was prepared by comparative analysis of the genomes of M. bovis, M. avium subsp. avium, M. avium subsp. paratuberculosis, and Streptomyces coelicolor. Potential antigens were tested by applying them in a high-throughput peptide-based screening system to M. bovis-infected and BCG-vaccinated cattle and to cattle without prior exposure to M. bovis. A response hierarchy of antigens was established by comparing responses in infected animals. Three antigens (Mb2555, Mb2890, and Mb3895) were selected for further study, as they were strongly recognized in experimentally infected animals but with low or no frequency in BCG-vaccinated and naïve cows. Interestingly, all three antigens were recognized in animals vaccinated against Johne's disease, suggesting the presences of epitopes cross-reacting with M. avium subsp. paratuberculosis antigens. Eight peptides from the three antigens studied in detail were identified as immunodominant and were characterized in terms of major histocompatibility complex class II restriction element usage and shown to be restricted through both DR and DQ molecules. Reasons for antigenic cross-reactivity with M. avium subsp. paratuberculosis and refinement of the in silico strategy to predict such cross-reactivity from the primary protein sequence will be discussed. Evaluation of the peptides identified from the three dominant antigens by use of larger field studies is now a priority.


Subject(s)
Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Genomics , Mycobacterium tuberculosis/immunology , Tuberculosis/diagnosis , Amino Acid Sequence , Animals , Cattle , Humans , Molecular Sequence Data , Mycobacterium avium/genetics , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Peptides , Sequence Alignment , Tuberculosis/immunology
2.
Mol Microbiol ; 56(1): 163-74, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15773987

ABSTRACT

Through examination of one of the fundamental in vitro characteristics of Mycobacterium bovis--its requirement for pyruvate in glycerol medium--we have revealed a lesion in central metabolism that has profound implications for in vivo growth and nutrition. Not only is M. bovis unable to use glycerol as a sole carbon source but the lack of a functioning pyruvate kinase (PK) means that carbohydrates cannot be used to generate energy. This disruption in sugar catabolism is caused by a single nucleotide polymorphism in pykA, the gene which encodes PK, that substitutes glutamic acid residue 220 with an aspartic acid residue. Substitution of this highly conserved amino acid residue renders PK inactive and thus blocks the ATP generating roles of glycolysis and the pentose phosphate pathway. This mutation was found to occur in other members of the M. tuberculosis complex, namely M. microti and M. africanum. With carbohydrates unable to act as carbon sources, the importance of lipids and gluconeogenesis for growth in vivo becomes apparent. Complementation of M. bovis with the pykA gene from M. tuberculosis H37Rv restored growth on glycerol. Additionally, the presence of a functioning PK caused the colony morphology of the complemented strain to change from the characteristic dysgonic growth of M. bovis to eugonic growth, an appearance normally associated with M. tuberculosis. We also suggest that the glycerol-soaked potato slices used for the derivation of the M. bovis bacillus Calmette and Guérin (BCG) vaccine strain selected for an M. bovis PK+ mutant, a finding that explains the alteration in colony morphology noted during the derivation of BCG. In summary, the disruption of a key step in glycolysis divides the M. tuberculosis complex into two groups with distinct carbon source utilization.


Subject(s)
Mycobacterium bovis/enzymology , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/enzymology , Polymorphism, Single Nucleotide , Pyruvate Kinase/metabolism , Pyruvates/metabolism , Animals , Base Sequence , Carbon/metabolism , Culture Media , Glycerol/metabolism , Glycerol Kinase/genetics , Glycerol Kinase/metabolism , Humans , Molecular Sequence Data , Mutation , Mycobacterium bovis/genetics , Mycobacterium bovis/growth & development , Mycobacterium bovis/metabolism , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Pyruvate Kinase/genetics , Sequence Alignment
3.
Proc Natl Acad Sci U S A ; 100(13): 7877-82, 2003 Jun 24.
Article in English | MEDLINE | ID: mdl-12788972

ABSTRACT

Mycobacterium bovis is the causative agent of tuberculosis in a range of animal species and man, with worldwide annual losses to agriculture of $3 billion. The human burden of tuberculosis caused by the bovine tubercle bacillus is still largely unknown. M. bovis was also the progenitor for the M. bovis bacillus Calmette-Guérin vaccine strain, the most widely used human vaccine. Here we describe the 4,345,492-bp genome sequence of M. bovis AF2122/97 and its comparison with the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. Strikingly, the genome sequence of M. bovis is >99.95% identical to that of M. tuberculosis, but deletion of genetic information has led to a reduced genome size. Comparison with M. leprae reveals a number of common gene losses, suggesting the removal of functional redundancy. Cell wall components and secreted proteins show the greatest variation, indicating their potential role in host-bacillus interactions or immune evasion. Furthermore, there are no genes unique to M. bovis, implying that differential gene expression may be the key to the host tropisms of human and bovine bacilli. The genome sequence therefore offers major insight on the evolution, host preference, and pathobiology of M. bovis.


Subject(s)
Genome, Bacterial , Models, Biological , Models, Genetic , Molecular Sequence Data , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...