Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015632

ABSTRACT

Poly(N-isopropylacrylamide) (PNIPAAm) was introduced into a polyethylene terephthalate (PET) nonwoven fabric to develop novel support for polyamide (PA) thin-film composite (TFC) membranes without using a microporous support layer. First, temperature-responsive PNIPAAm hydrogel was prepared by reactive pore-filling to adjust the pore size of non-woven fabric, creating hydrophilic support. The developed PET-based support was then used to fabricate PA TFC membranes via interfacial polymerization. SEM-EDX and AFM results confirmed the successful fabrication of hydrogel-integrated non-woven fabric and PA TFC membranes. The newly developed PA TFC membrane demonstrated an average water permeability of 1 L/m2 h bar, and an NaCl rejection of 47.0% at a low operating pressure of 1 bar. The thermo-responsive property of the prepared membrane was studied by measuring the water contact angle (WCA) below and above the lower critical solution temperature (LCST) of the PNIPAAm hydrogel. Results proved the thermo-responsive behavior of the prepared hydrogel-filled PET-supported PA TFC membrane and the ability to tune the membrane flux by changing the operating temperature was confirmed. Overall, this study provides a novel method to fabricate TFC membranes and helps to better understand the influence of the support layer on the separation performance of TFC membranes.

2.
Sustain Cities Soc ; 72: 103031, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36570725

ABSTRACT

Understanding the interactions and transmission of pathogens with/via inanimate surfaces common in the built environment and public transport vehicles is critical to promoting sustainable and resilient urban development. Here, molecular dynamics (MD) simulations are used to study the adhesion of SARS-CoV-2 (the causative agent of COVID-19) to some of these surfaces at different temperatures (same for surfaces and ambiance) ranging from -23 to 60 °C. Surfaces simulated are aluminum, copper, copper oxide, polyethylene (PE), and silicon dioxide (SiO2). Steered MD (SMD) simulations are also used to investigate the transfer of the virus from PE and SiO2 when a contaminated surface is touched. The virus shows the lowest and highest adhesions to PE and SiO2, respectively (20 vs 534 eV). Influence of temperature is not found to be noticeable. Using simulated water molecules to represent moisture on the skin, SMD simulations show that water molecules can lift the virus from the PE surface but damage the virus when lifting it from the the SiO2 surface. The results suggest that the PE surface is a more favorable surface to transmit the virus than the other surfaces simulated in this study. The results are compared with those reported in a few experimental studies.

3.
J Environ Manage ; 276: 111299, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32882520

ABSTRACT

This work investigates the performance and structure of polyamide thin film nanocomposite (PA-TFN) membrane incorporated with triethylenetetramine-modified graphene oxide (GO-TETA). The embedment of GO-TETA nanosheets within the structure of PA-TFN membrane was evaluated at different concentrations (0.005, 0.01, 0.03 wt%; in aqueous piperazine (PIP)) through interfacial polymerization (IP). The physicochemical properties of the prepared membrane were investigated by SEM, AFM, water contact angle, and zeta potential as well as ATR-IR spectroscopy. The presence of longer chains of amino groups (in comparison with the directly linked amino ones) among the stacked GO nanosheets was assumed to increase interlayer spacing, resulting in remarkable changes in water permeance and separation behavior of modified polyamide (PA) membrane. It is seen that GO-TETA nanosheets were uniformly distributed in the matrix of PA layer. With increasing the concentration of GO-TETA, the flux of TFN membranes under 6 bar was increased from 49.8 l/m2 h (no additive) to 73.2 l/m2 h (TFN comprising 0.03 wt% GO-TETA. In addition, more loading GO-TETA resulted in a significant decrease in the average thickness of the polyamide layer from ~380 to ~150 nm. Furthermore, addition of GO-TETA improved the hydrophilicity of nanocomposite membranes, resulting in superb water flux recovery (antifouling indicator) as high as 95% after filtration of bovine serum albumin solution. Also, the retention capability of the TFN membranes towards some textile dyes increased as high as 99.6%.


Subject(s)
Graphite , Water Purification , Nylons , Trientine
4.
Acta Chim Slov ; 64(4): 945-958, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29318306

ABSTRACT

In this work, graphene oxide/Co3O4 nanocomposite was synthesized via hydrothermal decomposition of [Co(en)3] (NO3)3 complex onto graphene oxide nanosheets. The as-prepared nanocomposite (denoted as GO/Co3O4) was structurally characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopies (TEM and SEM), energy dispersive X-ray (EDX) spectroscopy, magnetic measurements, and N2 adsorption-desorption analysis. The results demonstrated successful immobilization of Co3O4 nanoparticles with an average diameter size of around 12.5 nm on the surface of graphene oxide nanosheets. The adsorption performance of GO/Co3O4 nanocomposite was investigated towards different organic dyes in aqueous solutions. The results displayed that the adsorption rate of the GO/Co3O4 nanocomposite was 98% for methylene blue (MB) in 12 min, and 66% and 45% for Rhodamine B (RhB) and methyl orange (MO) in 40 min, respectively. The effects of various important parameters including adsorbent dosage, contact time, pH, and temperature on the adsorption process were investigated in detail. The equilibrium adsorption data were better fitted by Langmuir isotherm. Adsorption kinetics is well-modeled using pseudo-second-order model. Different thermodynamic parameters indicated that the adsorption process was physisorption and spontaneous. The findings of the present work highlighted facile fabrication of GO/Co3O4 and its application for rapid and efficient removal of MB from wastewater.

5.
Bioresour Technol ; 102(2): 461-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20974530

ABSTRACT

In recent years biodiesel has drawn considerable amount of attention as a clean and renewable fuel. Biodiesel is produced from renewable sources such as vegetable oils and animal fat mainly through catalytic or non-catalytic transesterification method as well as supercritical method. However, as a consequence of disadvantages of these methods, the production cost increases dramatically. This article summarizes different biodiesel production methods with a focus on their advantages and disadvantages. The downstream and upstream strategies such as using waste cooking oils, application of non-edible plant oils, plant genetic engineering, using membrane separation technology for biodiesel production, separation and purification, application of crude glycerin as an energy supplement for ruminants, glycerin ultra-purification and their consequent roles in economizing the production process are fully discussed in this article.


Subject(s)
Biofuels/analysis , Biofuels/economics , Biotechnology/economics , Biotechnology/methods , Animals , Biofuels/supply & distribution , Catalysis , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...