Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38936407

ABSTRACT

BACKGROUND AND PURPOSE: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aß oligomer (AßO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AßO. KEY RESULTS: LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AßO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AßO-infused mice. CONCLUSION AND IMPLICATIONS: These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.

2.
CNS Neurol Disord Drug Targets ; 19(6): 437-447, 2020.
Article in English | MEDLINE | ID: mdl-32811404

ABSTRACT

BACKGROUND: ALDH-2 has been considered an important molecular target for the treatment of drug addiction due to its involvement in the metabolism of the neurotransmitter dopamine: however, the molecular basis for the selective inhibition of ALDH-2 versus ALDH-1 should be better investigated to enable a more pragmatic approach to the design of novel ALDH-2 selective inhibitors. OBJECTIVE: In the present study, we investigated the molecular basis for the selective inhibition of ALDH-2 by the antioxidant isoflavonoid daidzin (IC50 = 0.15 µM) compared to isoform 1 of ALDH through molecular dynamics studies and semiempirical calculations of the enthalpy of interaction. METHODS: The applied methodology consisted of performing the molecular docking of daidzin in the structures of ALDH-1 and ALDH-2 and submitting the lower energy complexes obtained to semiempirical calculations and dynamic molecular simulations. RESULTS: Daidzin in complex with ALDH-2 presented directed and more specific interactions, resulting in stronger bonds in energetic terms and, therefore, in enthalpic gain. Moreover, the hydrophobic subunits of daidzin, in a conformationally more restricted environment (such as the catalytic site of ALDH-2), promote the better organization of the water molecules when immersed in the solvent, also resulting in an entropic gain. CONCLUSION: The molecular basis of selective inhibition of ALDH-2 by isoflavonoids and related compounds could be related to a more favorable equilibrium relationship between enthalpic and entropic features. The results described herein expand the available knowledge regarding the physiopathological and therapeutic mechanisms associated with drug addiction.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Enzyme Inhibitors/pharmacology , Isoflavones/pharmacology , Dopamine/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Substance-Related Disorders/drug therapy
4.
J Mass Spectrom ; 40(6): 815-20, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15892183

ABSTRACT

Recently, two analogous series of N-pyrazolylmethyl and N-triazolylmethyl N-phenylpiperazines have been prepared and found to be potential antipsychotic drugs acting as new selective ligands of the dopamine D2 receptor. Herein we report a systematic study of their high-resolution electrospray ionization mass and tandem mass spectra in which the main dissociation routes of their protonated molecules are determined and rationalized. The ESI-MS/MS data is very characteristic for both series allowing straightforward isomeric differentiation. A single and dominant fragment ion for the pyrazole series and four major fragment ions for the triazole series are useful for selective reaction MS monitoring of these potential drugs in biological fluids.


Subject(s)
Antipsychotic Agents/chemistry , Dopamine Antagonists/chemistry , Piperazines/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Ligands , Receptors, Dopamine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...