Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Gigascience ; 8(5)2019 05 01.
Article in English | MEDLINE | ID: mdl-31107941

ABSTRACT

BACKGROUND: Rice molecular genetics, breeding, genetic diversity, and allied research (such as rice-pathogen interaction) have adopted sequencing technologies and high-density genotyping platforms for genome variation analysis and gene discovery. Germplasm collections representing rice diversity, improved varieties, and elite breeding materials are accessible through rice gene banks for use in research and breeding, with many having genome sequences and high-density genotype data available. Combining phenotypic and genotypic information on these accessions enables genome-wide association analysis, which is driving quantitative trait loci discovery and molecular marker development. Comparative sequence analyses across quantitative trait loci regions facilitate the discovery of novel alleles. Analyses involving DNA sequences and large genotyping matrices for thousands of samples, however, pose a challenge to non-computer savvy rice researchers. FINDINGS: The Rice Galaxy resource has shared datasets that include high-density genotypes from the 3,000 Rice Genomes project and sequences with corresponding annotations from 9 published rice genomes. The Rice Galaxy web server and deployment installer includes tools for designing single-nucleotide polymorphism assays, analyzing genome-wide association studies, population diversity, rice-bacterial pathogen diagnostics, and a suite of published genomic prediction methods. A prototype Rice Galaxy compliant to Open Access, Open Data, and Findable, Accessible, Interoperable, and Reproducible principles is also presented. CONCLUSIONS: Rice Galaxy is a freely available resource that empowers the plant research community to perform state-of-the-art analyses and utilize publicly available big datasets for both fundamental and applied science.


Subject(s)
Databases, Genetic , Genomics/methods , Oryza/genetics , Plant Breeding/methods , Software , Seed Bank
3.
Brief Bioinform ; 20(2): 565-571, 2019 03 25.
Article in English | MEDLINE | ID: mdl-29659709

ABSTRACT

Improving productivity of the staple crops wheat and rice is essential to feed the growing global population, particularly in the context of a changing climate. However, current rates of yield gain are insufficient to support the predicted population growth. New approaches are required to accelerate the breeding process, and many of these are driven by the application of large-scale crop data. To leverage the substantial volumes and types of data that can be applied for precision breeding, the wheat and rice research communities are working towards the development of integrated systems to access and standardize the dispersed, heterogeneous available data. Here, we outline the initiatives of the International Wheat Information System (WheatIS) and the International Rice Informatics Consortium (IRIC) to establish Web-based single-access systems and data mining tools to make the available resources more accessible, drive discovery and accelerate the production of new crop varieties. We discuss the progress of WheatIS and IRIC towards unifying specialized wheat and rice databases and building custom software platforms to manage and interrogate these data. Single-access crop information systems will strengthen scientific collaboration, optimize the use of public research funds and help achieve the required yield gains in the two most important global food crops.


Subject(s)
Crops, Agricultural/growth & development , Information Systems , Oryza/growth & development , Triticum/growth & development
4.
Nature ; 557(7703): 43-49, 2018 05.
Article in English | MEDLINE | ID: mdl-29695866

ABSTRACT

Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.


Subject(s)
Crops, Agricultural/classification , Crops, Agricultural/genetics , Genetic Variation , Genome, Plant/genetics , Oryza/classification , Oryza/genetics , Asia , Evolution, Molecular , Genes, Plant/genetics , Genetics, Population , Genomics , Haplotypes , INDEL Mutation/genetics , Phylogeny , Plant Breeding , Polymorphism, Single Nucleotide/genetics
5.
Nucleic Acids Res ; 45(D1): D1075-D1081, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899667

ABSTRACT

We describe updates to the Rice SNP-Seek Database since its first release. We ran a new SNP-calling pipeline followed by filtering that resulted in complete, base, filtered and core SNP datasets. Besides the Nipponbare reference genome, the pipeline was run on genome assemblies of IR 64, 93-11, DJ 123 and Kasalath. New genotype query and display features are added for reference assemblies, SNP datasets and indels. JBrowse now displays BAM, VCF and other annotation tracks, the additional genome assemblies and an embedded VISTA genome comparison viewer. Middleware is redesigned for improved performance by using a hybrid of HDF5 and RDMS for genotype storage. Query modules for genotypes, varieties and genes are improved to handle various constraints. An integrated list manager allows the user to pass query parameters for further analysis. The SNP Annotator adds traits, ontology terms, effects and interactions to markers in a list. Web-service calls were implemented to access most data. These features enable seamless querying of SNP-Seek across various biological entities, a step toward semi-automated gene-trait association discovery. URL: http://snp-seek.irri.org.


Subject(s)
Databases, Nucleic Acid , Genome, Plant , INDEL Mutation , Oryza/genetics , Polymorphism, Single Nucleotide , Search Engine , Software , Alleles , Computational Biology/methods , Gene Frequency , Genetic Loci , Genomics/methods , Genotype , User-Computer Interface , Web Browser
6.
Nucleic Acids Res ; 43(Database issue): D1023-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25429973

ABSTRACT

We have identified about 20 million rice SNPs by aligning reads from the 3000 rice genomes project with the Nipponbare genome. The SNPs and allele information are organized into a SNP-Seek system (http://www.oryzasnp.org/iric-portal/), which consists of Oracle database having a total number of rows with SNP genotypes close to 60 billion (20 M SNPs × 3 K rice lines) and web interface for convenient querying. The database allows quick retrieving of SNP alleles for all varieties in a given genome region, finding different alleles from predefined varieties and querying basic passport and morphological phenotypic information about sequenced rice lines. SNPs can be visualized together with the gene structures in JBrowse genome browser. Evolutionary relationships between rice varieties can be explored using phylogenetic trees or multidimensional scaling plots.


Subject(s)
Databases, Nucleic Acid , Genome, Plant , Oryza/genetics , Polymorphism, Single Nucleotide , Oryza/anatomy & histology
7.
PLoS Comput Biol ; 6(6): e1000799, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20543878

ABSTRACT

Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment.


Subject(s)
Genes, Bacterial , Halobacteriaceae/physiology , Models, Biological , Acetates/metabolism , Aerobiosis/physiology , Amino Acids/metabolism , Biomass , Carbon/metabolism , Computational Biology/methods , Halobacteriaceae/genetics , Halobacteriaceae/growth & development , Halobacteriaceae/metabolism , Linear Models , Metabolic Networks and Pathways/physiology
8.
J Zhejiang Univ Sci B ; 6(5): 382-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15822152

ABSTRACT

Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related traits under stressed and well-water conditions were assayed in mapping populations derived from crosses of AzucenaxIR64 and AzucenaxBala. To find the candidate rice genes underlying Quantitative Trait Loci (QTL) in these populations, we conducted in silico analysis of a candidate region flanked by the genetic markers RM212 and RM319 on chromosome 1, proximal to the semi-dwarf (sd1) locus. A total of 175 annotated genes were identified from this region. These included 48 genes annotated by functional homology to known genes, 23 pseudogenes, 24 ab initio predicted genes supported by an alignment match to an EST (Expressed sequence tag) of unknown function, and 80 hypothetical genes predicted solely by ab initio means. Among these, 16 candidate genes could potentially be involved in drought stress response.


Subject(s)
Disasters , Genes, Plant/genetics , Genome, Plant , Oryza/genetics , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Water/metabolism , Expressed Sequence Tags , Gene Expression Regulation, Plant/genetics , Gene Library , Plant Diseases/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...