Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36837673

ABSTRACT

Lead (Pb) exposure can be harmful to public health, especially through drinking water. One of the promising treatment methods for lead contaminated water is the adsorption-filtration method. To ensure the cost-effectiveness of the process, naturally derived adsorbent shall be utilised. In this study, hydroxyapatite particles, Ca10(PO4)6(OH)2 (HAP) derived from waste cockle shell, were incorporated into the outer layer of polysulfone/HAP (PSf/HAP) dual-layer hollow fibre (DLHF) membrane to enhance the removal of lead from the water source due to its hydrophilic nature and excellent adsorption capacity. The PSf/HAP DLHF membranes at different HAP loadings in the outer layer (0, 10, 20, 30 and 40 wt%) were fabricated via the co-extrusion phase inversion technique. The performance of the DLHF membranes was evaluated in terms of pure water flux, permeability and adsorption capacity towards lead. The results indicated that the HAP was successfully incorporated into the outer layer of the membrane, as visibly confirmed by microscopic analysis. The trend was towards an increase in pure water flux, permeability and lead adsorption capacity as the HAP loading increased to the optimum loading of 30 wt%. The optimized DLHF membrane displayed a reduced water contact angle by 95%, indicating its improved surface hydrophilicity, which positively affects the pure water flux and permeability of the membrane. Furthermore, the DLHF membrane possessed the highest lead adsorption capacity, 141.2 mg/g. The development of a hybrid inorganic-organic DLHF membrane via the incorporation of the naturally derived HAP in the outer layer is a cost-effective approach to treat lead contaminated water.

2.
Membranes (Basel) ; 12(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35207032

ABSTRACT

The addition of antibacterial material to hollow fiber membranes improves the membrane anti-biofouling characteristics. Antibacterial membranes were fabricated in this study to improve membrane function while also extending membrane lifetime. Neat polyvinylidene difluoride (PVDF) and PVDF hollow fiber membrane with the incorporation of antibacterial agent zinc oxide (ZnO) nanoparticles with various loading (2.5-7.5 wt.%) were fabricated by using dry/wet spinning method. The membrane structure, particle distribution, functional group, hydrophilicity, and pore size of each membrane were all assessed. The result shows that all ZnO/PVDF hollow fiber membranes have the asymmetric structure with even dispersion of ZnO nanoparticles throughout the membranes. The results showed that increased ZnO loadings considerably improved membrane hydrophilicity, and average pore size, in addition to good performance of pure water flux. Antibacterial testing shows that ZnO incorporated in the membrane matrix and membrane surfaces prevents bacteria that cause biofouling from adhering to the membrane. ZnO/PVDF membrane recorded excellent bovine serum albumin (BSA) rejection at 93.4% ± 0.4 with flux recovery rate at 70.9% ± 2.1. These results suggest that antibacterial ZnO/PVDF hollow fiber membranes are promising in relation to reducing biofouling for various water and wastewater treatment.

3.
ACS Appl Mater Interfaces ; 12(29): 33276-33287, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32589391

ABSTRACT

The development of wearable artificial kidney demands an efficient dialysate recovery, which relies upon the adsorption process. This study proposes a solution to solve the problem of competitive adsorption between the uremic toxins by employing two adsorptive components in a membrane separation process. Dual-layer hollow fiber (DLHF) membranes, which are composed of a polysulfone (PSf)/activated carbon (AC) inner layer and a PSf/poly(methyl methacrylate) (PMMA) outer layer, were prepared for co-adsorptive removal of creatinine and urea from aqueous solution. The DLHF membranes were characterized in terms of morphological, physicochemical, water transport, and creatinine adsorption properties. The membrane was then subjected to an ultrafiltration adsorption study for performance evaluation. The incorporation of AC in membrane, as confirmed by microscopic and surface analyses, has improved the pure water flux up to 25.2 L/(m2 h). A membrane with optimum AC loading (9 wt %) demonstrated the highest maximum creatinine adsorption capacity (86.2 mg/g) based on the Langmuir adsorption isotherm model. In the ultrafiltration adsorption experiment, the membrane removed creatinine and urea with a combined average percent removal of 29.3%. Moreover, the membrane exhibited creatinine and urea uptake recoveries of 98.8 and 81.2%, respectively. The combined action of PMMA and AC in the PSf DLHF membrane has made the adsorption of multiple uremic toxins possible during dialysate recovery.


Subject(s)
Carbon/chemistry , Creatinine/chemistry , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Sulfones/chemistry , Urea/chemistry , Adsorption , Particle Size , Porosity , Surface Properties
4.
Int J Biol Macromol ; 152: 633-644, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32112845

ABSTRACT

In this study, improvement of urea and creatinine permeability of polyethersulfone (PES) membrane by coating with synthesized tripolyphosphate-crosslinked chitosan (TPP-CS) has been conducted. Original and modified membranes, e.g. pristine PES, polyethersulfone-polyethylene glycol (PES-PEG) and PES-PEG/TPP-CS membranes were characterized using FTIR, DTG, SEM, AFM, water uptake, contact angles, porosity measurement, tensile strength test and permeation tests against urea and creatinine. The results show that the PES modification by TPP-CS coating has been successfully carried out. The water uptake ability, hydrophilicity and porosity of the modified membranes increase significantly to a greater degree. All modified membranes have good thermal stability and tensile strength and their permeation ability towards urea and creatinine increase with the increasing concentration of TPP-CS. PES membrane has urea clearance ability of 7.36 mg/dL and creatinine of 0.014 mg/dL; membrane PES-PEG shows urea clearance of 11.87 mg/dL and creatinine of 0.32 mg/dL; while PES-PEG/TPP-CS membrane gives urea clearance of 20.87-36.40 mg/dL and creatinine in the range of 0.52-0.78 mg/dL. These results suggest that the PES-PEG membrane coated with TPP-CS is superior and can be used as potential material for hemodialysis membrane.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Polyphosphates/chemistry , Sulfones/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes/chemistry , Membranes, Artificial , Permeability
5.
Mater Sci Eng C Mater Biol Appl ; 99: 491-504, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889724

ABSTRACT

Polyurethane (PU) with three different functional groups: carboxyl, hydroxyl and sulphonyl group on its molecular structure were synthesised in this work. The synthesised material suppresses blood clotting and exhibits anticoagulant characteristics due to the presence of the important anionic groups. The synthesised PU was blended with polyethersulphone (PES) and fabricated into flat-sheet membrane to study the physico-chemical and biocompatibility properties of the PES membrane for blood purification application. PES-PU flat-sheet membranes were fabricated via the dry-wet phase separation technique. Different loading of PU (0, 1, 2, 3, 4, and 5%) blended with PES was studied and compared. Based on the in-vitro biocompatibility analysis of the membrane, it can be suggested that the membrane incorporated with PU has better anticoagulant properties compared to the pristine PES membrane. PU incorporation prolonged the clotting time, decreased the formation of thrombin, decreased soluble complement component 3a (C3a) generation and suppressed platelet adhesion and aggregation. The anionic groups on the membrane surface might bind to coagulation factors (antithrombin) and the calcium ions, Ca2+ and thus improve anticoagulant ability. Based on both physico-chemical and in-vitro studied, 4% loading of PU is the optimum loading for incorporation with PES membrane. These results suggested that the blended PES-PU membranes with good haemocompatibility allowed practical application in the field of blood purification.


Subject(s)
Blood Cells/cytology , Cell Separation/methods , Membranes, Artificial , Polymers/chemical synthesis , Polyurethanes/chemical synthesis , Sulfones/chemical synthesis , Blood Coagulation , Complement Activation , Complement C3a/metabolism , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Platelet Adhesiveness , Polymers/chemistry , Polyurethanes/chemistry , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared , Sulfones/chemistry , Surface Properties , Temperature , Thrombosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...