Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(8): 9464-9483, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29715896

ABSTRACT

The recently discovered ability of the quantum cascade laser to produce a harmonic frequency comb has attracted new interest in these devices for both applications and fundamental laser physics. In this review we present an extensive experimental phenomenology of the harmonic state, including its appearance in mid-infrared and terahertz quantum cascade lasers, studies of its destabilization induced by delayed optical feedback, and the assessment of its frequency comb nature. A theoretical model explaining its origin as due to the mutual interaction of population gratings and population pulsations inside the laser cavity will be described. We explore different approaches to control the spacing of the harmonic state, such as optical injection seeding and variation of the device temperature. Prospective applications of the harmonic state include microwave and terahertz generation, picosecond pulse generation in the mid-infrared, and broadband spectroscopy.

2.
ACS Photonics ; 4(5): 1225-1231, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28540324

ABSTRACT

Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 µm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength.

3.
Opt Express ; 23(12): 15734-47, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193552

ABSTRACT

Predictable tuning behavior and stable laser operation are both crucial for laser spectroscopy measurements. We report a sampled grating quantum cascade laser (QCL) with high spectral tuning stability over the entire tuning range. We have determined the minimum loss margin required to suppress undesired lasing modes in order to ensure predictable tuning behavior. We have quantified power fluctuations and drift of our devices by measuring the Allan deviation. To demonstrate the feasibility of sampled grating QCLs for high-precision molecular spectroscopy, we have built a simple transmission spectroscopy setup. Our results prove that sampled grating QCLs are suitable light sources for highly sensitive spectroscopy measurements.

4.
Opt Express ; 20(21): 23339-48, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188297

ABSTRACT

We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 µm (63 cm(-1)), from 8.32 to 8.78 µm. The peak optical output power exceeds 280 mW for nine of the modes.


Subject(s)
Interferometry/instrumentation , Lasers , Lenses , Equipment Design , Equipment Failure Analysis , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...