Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 158(10): 104104, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36922135

ABSTRACT

In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity. Resultant hybrid light-matter states exhibit energy level shifts, are delocalized over many molecular units, and have a different excited-state potential energy landscape, which leads to modified exciton dynamics. Previously, non-Hermitian Hamiltonians have been derived to describe the excited states of molecules coupled to surface plasmons (i.e., plexcitons), and these operators have been successfully used in the description of linear and third order optical response. In this article, we rigorously derive non-Hermitian Hamiltonians in the response function formalism of nonlinear spectroscopy by means of Feshbach operators and apply them to explore spectroscopic signatures of plexcitons. In particular, we analyze the optical response below and above the exceptional point that arises for matching transition energies for plasmon and molecular components and study their decomposition using double-sided Feynman diagrams. We find a clear distinction between interference and Rabi splitting in linear spectroscopy and a qualitative change in the symmetry of the line shape of the nonlinear signal when crossing the exceptional point. This change corresponds to one in the symmetry of the eigenvalues of the Hamiltonian. Our work presents an approach for simulating the optical response of sublevels within an electronic system and opens new applications of nonlinear spectroscopy to examine the different regimes of the spectrum of non-Hermitian Hamiltonians.

2.
J Chem Phys ; 152(21): 214301, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32505143

ABSTRACT

Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.

3.
J Phys Chem Lett ; 11(6): 2133-2141, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32069410

ABSTRACT

An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d4-d7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and long-lived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.

4.
J Phys Chem Lett ; 9(12): 3161-3166, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29806455

ABSTRACT

Despite the enormous amount of attention CH3NH3PbI3 has received, we are still lacking an in-depth understanding of its basic properties. In particular, the directional mechanical and structural characteristics of this material have remained elusive. Here, we investigate these properties by monitoring the propagation of longitudinal and shear phonons following the absorption of a femtosecond pulse along various crystalline directions of a CH3NH3PbI3 single crystal. We first extract the sound velocities of longitudinal and transverse phonons along these directions of the crystal. Our study then reveals the negative directional thermal expansion of CH3NH3PbI3, which is responsible for strong coherent shear phonon generation. Finally, from these observations, we perform elastic characterization of this material, revealing a large directional Poisson's ratio, which reaches 0.7 and that we associate with the weak mechanical stability of this material. Our results also provide guidelines to fabricate a transducer of high-frequency transverse phonons.

5.
Nano Lett ; 17(7): 4248-4254, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28654299

ABSTRACT

Understanding of recombination and photoconductivity dynamics of photogenerated charge carriers in GaxIn1-xP NWs is essential for their optoelectronic applications. In this letter, we have studied a series of GaxIn1-xP NWs with varied Ga composition. Time-resolved photoinduced luminescence, femtosecond transient absorption, and time-resolved THz transmission measurements were performed to assess radiative and nonradiative recombination and photoconductivity dynamics of photogenerated charges in the NWs. We conclude that radiative recombination dynamics is limited by hole trapping, whereas electrons are highly mobile until they recombine nonradiatively. We also resolve gradual decrease of mobility of photogenerated electrons assigned to electron trapping and detrapping in a distribution of trap states. We identify that the nonradiative recombination of charges is much slower than the decay of the photoluminescence signal. Further, we conclude that trapping of both electrons and holes as well as nonradiative recombination become faster with increasing Ga composition in GaxIn1-xP NWs. We have estimated early time electron mobility in GaxIn1-xP NWs and found it to be strongly dependent on Ga composition due to the contribution of electrons in the X-valley.

6.
Nat Commun ; 8: 14398, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176755

ABSTRACT

Despite the great amount of attention CH3NH3PbI3 has received for its solar cell application, intrinsic properties of this material are still largely unknown. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. We apply this method to characterize a CH3NH3PbI3 single crystal. We measure the acoustic phonon properties and characterize electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. Our results reveal high electron and hole mobilities of 2,800 and 9,400 cm2 V-1 s-1, respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH3NH3PbI3.

7.
Nano Lett ; 16(8): 4792-8, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27352041

ABSTRACT

We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

8.
Ultrasonics ; 56: 52-65, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25455189

ABSTRACT

Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization.


Subject(s)
Phonons , Spectrum Analysis/methods , Nanotechnology , Semiconductors
9.
Sci Rep ; 4: 6249, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25176017

ABSTRACT

Despite the numerous devoted studies, water at solid interfaces remains puzzling. An ongoing debate concerns the nature of interfacial water at a hydrophilic surface, whether it is more solid-like, ice-like, or liquid-like. To answer this question, a complete picture of the distribution of the water molecule structure and molecular interactions has to be obtained in a non-invasive way and on an ultrafast time scale. We developed a new experimental technique that extends the classical acoustic technique to the molecular level. Using nanoacoustic waves with a femtosecond pulsewidth and an ångström resolution to noninvasively diagnose the hydration structure distribution at ambient solid/water interface, we performed a complete mapping of the viscoelastic properties and of the density in the whole interfacial water region at hydrophilic surfaces. Our results suggest that water in the interfacial region possesses mixed properties and that the different pictures obtained up to now can be unified. Moreover, we discuss the effect of the interfacial water structure on the abnormal thermal transport properties of solid/liquid interfaces.

10.
Nano Lett ; 14(3): 1317-23, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24559107

ABSTRACT

Practically, graphene is often deposited on substrates. Given the major substrate-induced modification of properties and considerable energy transfer at the interface, the graphene-substrate interaction has been widely discussed. However, the proposed mechanisms were restricted to the two-dimensional (2D) plane and interface, while the energy conduction in the third dimension is hardly considered. Herein, we disclose the transfer of energy perpendicular to the interface of the combined system of the 2D graphene and the 3D base. More precisely, our observation of the energy dissipation of optically excited graphene via emitting out-of-plane longitudinal acoustic phonon into the substrate is presented. By applying nanoultrasonic spectroscopy with a piezoelectric nanolayer embedded in the substrate, we found that under photoexcitation by a femtosecond laser pulse graphene can emit longitudinal coherent acoustic phonons (CAPs) with frequencies over 1 THz into the substrate. In addition, the waveform of the CAP pulse infers that the photocarriers and sudden lattice heating in graphene caused modification of graphene-substrate bond and consequently generated longitudinal acoustic phonons in the substrate. The direct observation of this unexplored graphene-to-substrate vertical energy transfer channel can bring new insights into the understanding of the energy dissipation and limited transport properties of supported graphene.

11.
Phys Rev Lett ; 111(22): 225901, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24329457

ABSTRACT

A phonon nanoscopy method, based on the picosecond ultrasonics technique, capable of studying the complex acoustic reflection coefficient at frequency up to 1 THz is proposed and demonstrated. By measuring the reflection coefficient at the same surface location at the interface between GaN and air, and between GaN and the material to characterize, we get access to the THz amplitude and phase spectra of the acoustic phonon reflection. The retrieval of both these pieces of information then allows the calculation of the attenuation in a wide range of frequency and gives new insight into the Kapitza anomaly. This method is then applied to cubic ice, and the measurements of the elastic properties, the phonon anharmonic decay spectrum up to 1 THz, as well as the measurements of the thermal phonon lifetime at 150 K are all achieved.

12.
Nano Lett ; 13(3): 1139-44, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23394396

ABSTRACT

The generation of guided acoustic phonons in the GHz range in GaN/AlN superlattices grown atop a GaN nanowire is presented. Combined with a femtosecond laser, ultrafast pump-probe spectroscopy allows the generation and detection of guided acoustic phonons at different frequencies in the nanowire superlattices. The capability of the nanowire superlattices to be excellent detectors of acoustic phonons at specific frequencies is then used to observe the strong dispersion, as a result of nanoconfinement, of guided acoustic phonons after their propagation in the nanowire. The generation of high frequency coherent guided acoustic phonons could be useful not only to realize an acoustic transducer with a nanolateral size but also as a source to understand the thermal behavior of nanowires.

13.
Opt Express ; 20(17): 18717-22, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-23038512

ABSTRACT

Femtosecond pump probe spectroscopy experiments were carried out to observe extensional modes of GaN nanorods. Different orders of extensional modes were generated and observed following the absorption of femtosecond light pulses. This observation confirms that with a diameter on the order of 100 nm, no mechanical change is expected compared to bulk GaN. We propose and demonstrate that the detection of these modes is achieved through the modulation of the Fabry-Pérot cavity formed by the nanorod array. The extensional modes change the nanorods length and thus modify the reflectivity of the rod-array cavity.


Subject(s)
Gallium/chemistry , Interferometry/methods , Nanotubes/chemistry , Spectrum Analysis/methods , Materials Testing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...