Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 177(3): 344-8, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15290004

ABSTRACT

RATIONALE: Flunarizine is known as a calcium channel blocker commonly used in many countries to treat migraine and vertigo. Parkinsonism has been described as one of its side-effects in the elderly, which is in agreement with its recently characterized moderate D2 receptor antagonism. OBJECTIVES: To perform a pre-clinical evaluation of flunarizine as a potential antipsychotic. METHODS: We evaluated the action of orally administered flunarizine in mice against hyperlocomotion induced by amphetamine and dizocilpine (MK-801) as pharmacological models of schizophrenia, induction of catalepsy as a measure for extrapyramidal symptoms and impairment induced by dizocilpine on the delayed alternation task for working memory. RESULTS: Flunarizine robustly inhibited hyperlocomotion induced by both amphetamine and dizocilpine at doses that do not reduce spontaneous locomotion (3-30 mg/kg). Mild catalepsy was observed at 30 mg/kg, being more pronounced at 50 mg/kg and 100 mg/kg. Flunarizine (30 mg/kg) improved dizocilpine-induced impairment on the delayed alternation test. CONCLUSIONS: These results suggest a profile comparable to atypical antipsychotics. The low cost, good tolerability and long half-life (over 2 weeks) of flunarizine are possible advantages for its use as an atypical antipsychotic. These results warrant clinical trials with flunarizine for the treatment of schizophrenia.


Subject(s)
Disease Models, Animal , Flunarizine/pharmacokinetics , Administration, Oral , Animals , Catalepsy/chemically induced , Dextroamphetamine/administration & dosage , Dextroamphetamine/adverse effects , Dextroamphetamine/antagonists & inhibitors , Dizocilpine Maleate/administration & dosage , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Flunarizine/administration & dosage , Flunarizine/adverse effects , Haloperidol/administration & dosage , Haloperidol/adverse effects , Mice , Motor Activity/drug effects , Motor Activity/physiology , Receptors, N-Methyl-D-Aspartate/administration & dosage , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...