Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 14(5): 139, 2024 May.
Article in English | MEDLINE | ID: mdl-38682094

ABSTRACT

Chilli veinal mottle virus (ChiVMV) is a potyvirus known to cause havoc in many solanaceous crops. Samples from tomato plants exhibiting typical mosaic and mottling symptoms in two locations from farmers' fields were collected and tested using DAC ELISA for the presence of ChiVMV and other viruses known to infect tomato. ChiVMV Gauribidanur isolate from infected tomato was mechanically inoculated to Datura metel, Nicotiana tabacum, Nicotiana benthamiana, Nicotiana glutinosa, chilli, and tomato plants which exhibited systemic mosaic and mottling symptoms 10 days post-inoculation. This results were further confirmed by RT-PCR and DAC ELISA using CP gene-specific primers and ChiVMV antisera, respectively. Transmission electron microscopy revealed the presence of long filamentous particles (800 × 11 nm) resembling viruses in the Potyviridae family. The complete genome of ChiVMV comprised 9716 nucleotides except for poly A tail, with a predicted open reading frame spanning 9270 nucleotides encoding polyproteins of 3089 amino acids. Comparative analysis revealed that ChiVMV-tomato isolates reported across the world shared maximum nucleotide identity (93-96.7%) with chilli isolates from India and Pakistan. These results were well supported by sequence demarcation analysis. Further, the Neibhor-Net network analysis of the complete genome of ChiVMV-tomato, along with other host isolates, formed a reticular network phylogenetic tree suggesting recombination events. Subsequently, RDP5 detected intra-specific recombination breakpoints at the positions 1656-5666 nucleotides with major parent ChiVMV (MN508960) Uravakonda and minor parent ChiVMV (MN508956) with a significant average p value of 1.905 × 10-22. The LAMP assay using ChiVMV-specific primers resulted in ladder-like amplified products on electrophoresed gel and a distinct red colour pattern with hydroxy naphthalene blue, indicating a positive reaction for the presence of ChiVMV in infected tomato samples. To validate LAMP-designed primers, RNA extracted from ChiVMV-infected tomato, chilli, datura, and tobacco samples were subjected to LAMP assay and it accurately detected the presence of ChiVMV in infected plant samples. Overall, this study provides holistic information of ChiVMV infecting tomato, spanning diagnosis, transmission, genetic characterization, and detection of recombination events, which collectively contribute to effective disease management, crop protection, and informed decision-making in agricultural practices.

2.
Virusdisease ; 33(2): 194-207, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35991698

ABSTRACT

Garden croton (Codiaeum variegatum L.) plants showing typical begomovirus symptoms of vein twisting, enation and curling were collected from different gardens at Varanasi, Uttar Pradesh state of India ranged from 20 to 30%. All the 10 ten (CR1-CR10) infected samples of garden croton resulted in expected amplicon of 1.2 Kb in PCR specific to begomoviruses. No amplification was obtained for betasatellite and alphasatellite specific primers. The complete genome sequence of DNA-A and DNA-B for two isolates (CR1 and CR2) was obtained through rolling cycle amplification (RCA) and comparisons were made with other begomoviruses using Sequence Demarcation Tool (SDT) which revealed that, DNA-A of two isolates, CR1 (Acc.No.: MW816855) and CR2 (Acc.No.: MW816856) showed maximum nucleotide (nt) identity of 85.7-85.9% with Tomato leaf curl Karnataka virus, which is below the threshold percentage of begomovirus species demarcation, hence considered as novel begomovirus and proposed the name Garden croton enation leaf curl virus (CroELCuV) [IN: Varanasi: Croton: 18]. Further, DNA-B these isolates shared maximum nt identity of 91.0-92.2% (DNA-B) with Tomato leaf curl New Delhi virus. Recombination and GC plot analysis showed that the recombination occured at in low GC content regions of DNA-A and DNA-B of the CroELCuV and are derived from the previously reported several begomoviruses. This is the first record of novel bipartite begomovirus associated with vein twisting, enation and leaf curling of disease of garden garden croton in India and world. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-022-00772-0.

3.
3 Biotech ; 11(2): 44, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33457171

ABSTRACT

The Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in outbreak of global pandemic, fatal pneumonia in human referred as Coronavirus Disease-2019 (Covid-19). Ayurveda, the age old practice of treating human ailments in India, can be considered against SARS-CoV-2. Attempt was made to provide preliminary evidences for interaction of 35 phytochemicals from two plants (Phyllanthus amarus and Andrographis paniculata used in Ayurveda) with SARS-CoV-2 proteins (open & closed state S protein, 3CLpro, PLpro and RdRp) through in silico docking analysis. The nucleotide analogue remdesivir, being used in treatment of SARS-CoV-2, was used as a positive control. The results revealed that 18 phytochemicals from P. amarus and 14 phytochemicals from A. paniculata shown binding energy affinity/dock score < - 6.0 kcal/mol, which is considered as minimum threshold for any compound to be used for drug development. Phytochemicals used for docking studies in the current study from P. amarus and A. paniculata showed binding affinity up to - 9.10 kcal/mol and - 10.60 kcal/mol, respectively. There was no significant difference in the binding affinities of these compounds with closed and open state S protein. Further, flavonoids (astragalin, kaempferol, quercetin, quercetin-3-O-glucoside and quercetin) and tannins (corilagin, furosin and geraniin) present in P. amarus have shown more binding affinity (up to - 10.60 kcal/mol) than remdesivir (up to - 9.50 kcal/mol). The pharmacokinetic predictions suggest that compounds from the two plants species studied in the current study are found to be non-carcinogenic, water soluble and biologically safe. The phytochemicals present in the extracts of P. amarus and A. paniculata might have synergistic effect with action on multiple target sites of SARS-CoV-2. The information generated here might serve as preliminary evidence for anti SARS-CoV-2 activity of phytochemicals present from P. amarus and A. paniculata and the potential of Ayurveda medicine in combating the virus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02578-7.

SELECTION OF CITATIONS
SEARCH DETAIL
...