Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 17(9)2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27649149

ABSTRACT

Enhanced cellular DNA repair efficiency and suppression of genomic instability have been proposed as mechanisms underlying radio-adaptive responses following low-dose radiation exposures. We previously showed that low-dose γ irradiation does not generate radio-adaptation by lowering radiation-induced cytogenetic damage in mouse spleen. Since radiation may exert tissue-specific effects, we extended these results here by examining the effects of γ radiation on cytogenetic damage and proliferative index in bone marrow erythrocytes of C57BL/6 and BALB/c mice. In C57BL/6 mice, the induction of micronuclei in polychromatic erythrocytes (MN-PCE) was observed at radiation doses of 100 mGy and greater, and suppression of erythroblast maturation occurred at doses of >500 mGy. A linear dose-response relationship for MN-PCE frequencies in C57BL/6 mice was established for radiation doses between 100 mGy and 1 Gy, with departure from linearity at doses of >1 Gy. BALB/c mice exhibited increased MN-PCE frequencies above baseline following a 20 mGy radiation exposure but did not exhibit radio-sensitivity relative to C57BL/6 mice following 2 Gy exposure. Radio-adaptation of bone marrow erythrocytes was not observed in either strain of mice exposed to low-dose priming γ irradiation (single doses of 20 mGy or 100 mGy or multiple 20 mGy doses) administered at various times prior to acute 2 Gy irradiation, confirming the lack of radio-adaptive response for induction of cytogenetic damage or suppression or erythrocyte proliferation/maturation in bone marrow of these mouse strains.


Subject(s)
Bone Marrow Cells/cytology , Erythrocytes/radiation effects , Micronuclei, Chromosome-Defective , Adaptation, Physiological/radiation effects , Animals , Bone Marrow Cells/radiation effects , Cell Nucleus/radiation effects , Dose-Response Relationship, Radiation , Erythrocytes/cytology , Gamma Rays , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Micronucleus Tests , Radiation Dosage
2.
Lab Anim (NY) ; 41(4): 102-7, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22430476

ABSTRACT

For genotyping of transgenic animals, many IACUC guidelines recommend the use of fecal DNA when possible because this approach is non-invasive. Existing methods for extracting fecal DNA may be costly or involve the use of toxic organic solvents. Furthermore, feces contain an abundance of PCR inhibitors that may hinder DNA amplification when they are co-purified with fecal DNA. Here the authors describe a cost-effective, non-toxic method for genotyping transgenic animals by using the reagent AquaStool to extract fecal DNA and remove PCR inhibitors. Genotyping results obtained from fecal DNA samples extracted using AquaStool were reliably accurate when compared with results obtained from tail DNA samples. Because it is non-invasive, the authors believe that use of this method for genotyping transgenic animals using fecal DNA samples may improve animal welfare.


Subject(s)
Animal Care Committees , Animal Welfare , Animals, Genetically Modified/genetics , Chemical Fractionation/methods , DNA/genetics , Feces/chemistry , Animals , DNA/analysis , Genotype , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...