Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 35(5): 972-981, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38551491

ABSTRACT

The identification and quantitation of plasmalogen glycerophospholipids is challenging due to their isobaric overlap with plasmanyl ether-linked glycerophospholipids, susceptibility to acid degradation, and their typically low abundance in biological samples. Trimethylation enhancement using diazomethane (TrEnDi) can be used to significantly enhance the signal of glycerophospholipids through the creation of quaternary ammonium groups producing fixed positive charges using 13C-diazomethane in complex lipid extracts. Although TrEnDi requires a strong acid for complete methylation, we report an optimized protocol using 10 mM HBF4 with the subsequent addition of a buffer solution that prevents acidic hydrolysis of plasmalogen species and enables the benefits of TrEnDi to be realized for this class of lipids. These optimized conditions were applied to aliquots of bovine liver extract (BLE) to achieve permethylation of plasmalogen lipids within a complex mixture. Treating aliquots of unmodified and TrEnDi-derivatized BLE samples with 80% formic acid and comparing their liquid chromatography mass spectrometry (LCMS) results to analogous samples not treated with formic acid, enabled the identification of 29 plasmalogen species. On average, methylated plasmalogen species from BLE demonstrated 2.81-fold and 28.1-fold sensitivity gains over unmodified counterparts for phosphatidylcholine and phosphatidylethanolamine plasmalogen species, respectively. Furthermore, the compatibility of employing 13C-TrEnDi and a previously reported iodoacetalization strategy was demonstrated to effectively identify plasmenyl-ether lipids in complex biological extracts at greater levels of sensitivity. Overall, we detail an optimized 13C-TrEnDi derivatization strategy that enables the analysis of plasmalogen glycerophospholipids with no undesired cleavage of radyl groups, boosting their sensitivity in LCMS and LCMS/MS analyses.


Subject(s)
Carbon Isotopes , Diazomethane , Glycerophospholipids , Liver , Plasmalogens , Animals , Cattle , Plasmalogens/chemistry , Plasmalogens/analysis , Carbon Isotopes/analysis , Diazomethane/chemistry , Liver/chemistry , Glycerophospholipids/chemistry , Glycerophospholipids/analysis , Methylation , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
2.
J Am Soc Mass Spectrom ; 35(1): 140-150, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38127770

ABSTRACT

Over the past century, agriculture practices have transitioned from manual cultivation to the use of an array of chemical herbicides for weed control including phosphinothricin, or glufosinate (GLUF). Consequently, the potential for long-term residual GLUF exposure in the food chain has increased, highlighting the need for improved analytical strategies for its detection, as well as the detection of its main breakdown product 3-(methylphosphinico)propionic acid (MPPA). Chemical derivatization strategies have been developed to improve the detection of GLUF and MPPA via liquid chromatography tandem mass spectrometry analyses. Herein, we employ trimethylation enhancement using diazomethane (TrEnDi) for the first time as a means to confer analytical advantages via quantitatively derivatizing these analytes into permethylated GLUF ([GLUFTr]+) and MPPA ([MPPATr+H]+). Comparing [GLUFTr]+ and [MPPATr+H]+ to underivatized counterparts, TrEnDi yields 2.8-fold and 1.7-fold improvements in reversed-phase chromatographic retention, respectively, while MS-based sensitivity is enhanced 4.1-fold and 11.0-fold, respectively. Successful analyte derivatization (with >99% yields) was further demonstrated on a commercial herbicide solution imparting consistent analytical enhancements. To investigate the benefits of TrEnDi in a bona fide agricultural scenario, simple aqueous extractions from distinct parts of field-grown canola plants were performed to quantify GLUF and MPPA before and after TrEnDi derivatization. In their underivatized forms, GLUF and MPPA were undetectable in all field samples, whereas [GLUFTr]+ and [MPPATr+H]+ were readily quantifiable using the same analysis conditions. Our results demonstrate that TrEnDi continues to be a useful tool to enhance the analytical characteristics of organic molecules that are traditionally difficult to detect.


Subject(s)
Diazomethane , Herbicides , Diazomethane/chemistry , Herbicides/analysis , Aminobutyrates/analysis
3.
J Am Soc Mass Spectrom ; 34(12): 2722-2730, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37929927

ABSTRACT

13C-Trimethylation enhancement using diazomethane (13C-TrEnDi) is a chemical derivatization technique that uses 13C-labeled diazomethane to increase mass spectrometry (MS) signal intensities for phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipid classes, both of which are of major interest in biochemistry. In silico mass spectrometry databases have become mainstays in lipidomics experiments; however, 13C-TrEnDi-modified PC and PE species have altered m/z and fragmentation patterns from their native counterparts. To build a database of 13C-TrEnDi-modified PC and PE species, a lipid extract from nutritional yeast was derivatized and fragmentation spectra of modified PC and PE species were mined using diagnostic fragmentation filtering by searching 13C-TrEnDi-modified headgroups with m/z 199 (PC) and 202 (PE). Identities of 25 PC and 10 PE species were assigned after comparing to predicted masses from the Lipid Maps Structure Database with no false positive identifications observed; neutral lipids could still be annotated after derivatization. Collision energies from 16 to 52 eV were examined, resulting in three additional class-specific fragment ions emerging, as well as a combined sn-1/sn-2 fragment ion, allowing sum-composition level annotations to be assigned. Using the Lipid Blast templates, a NIST-compatible 13C-TrEnDi database was produced based on fragmentation spectra observed at 36 eV and tested on HEK 293T cell lipid extracts, identifying 47 PC and 24 PE species, representing a 1.8-fold and 2.2-fold increase in annotations, respectively. The 13C-TrEnDi database is freely available, MS vendor-independent, and widely compatible with MS data processing pipelines, increasing the throughput and accessibility of TrEnDi for lipidomics applications.


Subject(s)
Diazomethane , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Diazomethane/chemistry , Phosphatidylcholines/chemistry
4.
J Am Soc Mass Spectrom ; 34(5): 948-957, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37132245

ABSTRACT

Glyphosate (GLY), a synthetic, nonselective systemic herbicide that is particularly effective against perennial weeds, is the most used weedkiller in the world. There are growing concerns over GLY accumulation in the environment and the attendant human health-associated risks, and despite increased attention in the media, GLY and its breakdown product aminomethylphosphonic acid (AMPA) remain elusive to many analytical strategies. Chemical derivatization coupled with high-performance liquid chromatography-mass spectrometry (HPLC-MS) addresses the challenge of quantifying low levels of GLY and AMPA in complex samples. Here we demonstrate the use of in situ trimethylation enhancement using diazomethane (iTrEnDi) to derivatize GLY and AMPA into permethylated products ([GLYTr]+ and [AMPATr]+, respectively) prior to analysis via HPLC-MS. iTrEnDi produced quantitative yields and resulted in a 12-340-fold increases in HPLC-MS-based sensitivity for [GLYTr]+ and [AMPATr]+, respectively, compared with underivatized counterparts. The limits of detection of derivatized compounds were found to be 0.99 ng/L for [GLYTr]+ and 1.30 ng/L for [AMPATr]+, demonstrating significant sensitivity improvements compared to previously established derivatization techniques. iTrEnDi is compatible with the direct derivatization of Roundup formulations. Finally, as proof of principle, a simple aqueous extraction followed by iTrEnDi enabled the detection of [GLYTr]+ and [AMPATr]+ on the exterior of field-grown soybeans that were sprayed with Roundup. Overall, iTrEnDi ameliorates issues relating to low proton affinity and chromatographic retention, boosting HPLC-MS-based sensitivity and enabling the elucidation of elusive analytes such as GLY and AMPA within agricultural systems.


Subject(s)
Herbicides , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Herbicides/analysis , Herbicides/metabolism , Tandem Mass Spectrometry/methods , Glyphosate
5.
Anal Chem ; 93(2): 1084-1091, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33300778

ABSTRACT

Trimethylation enhancement using diazomethane (TrEnDi) is a derivatization technique that significantly enhances the signal intensity of glycerophospholipid species in mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses. Here, we describe a novel apparatus that is able to conduct in situ TrEnDi (iTrEnDi) by generating and immediately reacting small amounts of gaseous diazoalkane with analyte molecules. iTrEnDi allows complete and rapid methylation of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and sphingomyelin (SM) in a safe manner by removing any need for direct handling of dangerous diazoalkane solutions. iTrEnDi-modified PC ([PCTr]+) and PE ([PETr]+) showed similar sensitivity enhancements and fragmentation patterns compared to our previously reported methodology. iTrEnDi yielded dimethylated PA ([PATr]), which exhibited dramatically improved chromatographic behavior and a 14-fold increase in liquid chromatography MS (LCMS) sensitivity compared to unmodified PA. In comparison to in-solution-based TrEnDi, iTrEnDi demonstrated a modest decrease in sensitivity, likely due to analyte losses during handling. However, the enhanced safety benefits of iTrEnDi coupled with its ease of use and capacity for automation, as well as its accommodation of more-reactive diazoalkane species, vastly improve the accessibility and utility of this derivatization technique. Finally, as a proof of concept, iTrEnDi was used to produce diazoethane (DZE), a more-reactive diazoalkane than diazomethane. Reaction between DZE and PC yielded ethylated [PCTr]+, which fragmented via MS/MS to produce a high-intensity characteristic fragment ion, enabling a novel and highly sensitive precursor ion scan.

6.
J Am Soc Mass Spectrom ; 31(4): 938-945, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32233382

ABSTRACT

Shotgun lipidomics provides sensitive and fast lipid identification without the need for chromatographic separation. Challenges faced by shotgun analysis of glycerophospholipids (GPs) include the lack of signal uniformity across GP classes and the inability to determine the carbon-carbon double bond (C═C) location within the fatty acyl chains of an unsaturated species. Two distinct derivatization strategies were employed to both enhance the ionization of GPs, via trimethylation enhancement using 13C-diazomethane (13C-TrEnDi), as well as determine location of double bonds within fatty acyl chains, employing an in-solution photochemical reaction with acetone (via the Paternò-Büchi reaction). The modified GPs were then subjected to positive ion mode ionization via electrospray ionization, producing uniform ionization efficiencies for different classes of GP species. The GPs were charge inverted via gas-phase ion/ion reactions and sequentially fragmented using ion trap collision-induced dissociation (CID). The CID of the species led to fragmentation producing diagnostic ions indicative of C═C bond location. The approach enabled enhanced ionization and the identification of phosphatidylcholine and phosphatidylethanolamine species at the C═C level in a bovine lipid extract.

7.
J Org Chem ; 84(10): 6028-6039, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30964285

ABSTRACT

The use of sulfones as electron-withdrawing groups in substrates for palladium-catalyzed decarboxylative allylation was explored. A previously published trifluoromethanesulfonyl-based substrate was highly reactive and selective under mild conditions, but the substrate scope was not readily expanded. Instead, 3,5-bis(trifluoromethyl)phenyl sulfones were employed, thereby simultaneously retaining most of the electron deficiency and providing facile synthetic access. Optimization of the catalytic conditions to maximize the product distribution to a synthetically useful level of the allylation product over the protonation side product proved extremely challenging, with inconsistent and irreproducible results afforded with Pd2(dba)3 as the palladium source. A variety of substrates were subjected to the optimized catalytic conditions of PdCp(1-cinnamyl) and Xantphos in tetrahydrofuran at 50 °C for 30 min. These conditions were applicable to all substrates with the exception of the α,α-dimethyl allyl ester, which required more forcing conditions and afforded four products: the allylation and protonation products, as expected, along with a cyclopropylation product and an unprecedented pseudodimeric product. The mechanism for the formation of these unusual side products is considered.

8.
Anal Chem ; 89(17): 9452-9458, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28764333

ABSTRACT

Methylation of phospholipids (PL) leads to increased uniformity in positive electrospray ionization (ESI) efficiencies across the various PL subclasses. This effect is realized in the approach referred to as "trimethylation enhancement using 13C-diazomethane" (13C-TrEnDi), which results in the methyl esterification of all acidic sites and the conversion of amines to quaternary ammonium sites. Collision-induced dissociation (CID) of these cationic modified lipids enables class identification by forming distinctive headgroup fragments based on the number of 13C atoms incorporated during derivatization. However, there are no distinctive fragment ions in positive mode that provide fatty acyl information for any of the modified lipids. Gas-phase ion/ion reactions of 13C-TrEnDi-modified phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylcholine (PC), and sphingomyelin (SM) cations with dicarboxylate anions are shown to charge-invert the positively charged phospholipids to the negative mode. An electrostatically bound complex anion is shown to fragment predominantly via a novel headgroup dication transfer to the reagent anion. Fragmentation of the resulting anionic product yields fatty acyl information, in the case of the glycerophospholipids (PE, PS, and PC), via ester bond cleavage. Analogous information is obtained from modified SM lipid anions via amide bond cleavage. Fragmentation of the anions generated from charge inversion of the 13C-TrEnDi-modified phospholipids was also found to yield lipid class information without having to perform CID in positive mode. The combination of 13C-TrEnDi modification of lipid mixtures with charge inversion to the negative-ion mode retains the advantages of uniform ionization efficiency in the positive-ion mode with the additional structural information available in the negative-ion mode without requiring the lipids to be ionized directly in both ionization modes.


Subject(s)
Diazomethane/chemistry , Phospholipids/chemistry , Carbon Isotopes/chemistry , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
9.
Sensors (Basel) ; 16(10)2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27754429

ABSTRACT

Bisphenol A (BPA) is an estrogen-mimicking chemical that can be selectively detected in water using a chemical sensor based on molecularly imprinted polymers (MIPs). However, the utility of BPA-MIPs in sensor applications is limited by the presence of non-specific binding sites. This study explored a dual approach to eliminating these sites: optimizing the molar ratio of the template (bisphenol A) to functional monomer (methacrylic acid) to cross-linker (ethylene glycol dimethacrylate), and esterifying the carboxylic acid residues outside of specific binding sites by treatment with diazomethane. The binding selectivity of treated MIPs and non-treated MIPs for BPA and several potential interferents was compared by capillary electrophoresis with ultraviolet detection. Baclofen, diclofenac and metformin were demonstrated to be good model interferents to test all MIPs for selective binding of BPA. Treated MIPs demonstrated a significant decrease in binding of the interferents while offering high selectivity toward BPA. These results demonstrate that conventional optimization of the molar ratio, together with advanced esterification of non-specific binding sites, effectively minimizes the residual binding of interferents with MIPs to facilitate BPA sensing.


Subject(s)
Benzhydryl Compounds/chemistry , Molecular Imprinting/methods , Phenols/chemistry , Polymers/chemistry , Baclofen/analysis , Baclofen/chemistry , Benzhydryl Compounds/analysis , Diclofenac/analysis , Diclofenac/chemistry , Electrophoresis, Capillary , Metformin/analysis , Metformin/chemistry , Phenols/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
10.
Anal Chem ; 88(14): 6996-7004, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27275841

ABSTRACT

Significant sensitivity enhancements in the tandem mass spectrometry-based analysis of complex mixtures of several phospholipid classes has been achieved via (13)C-TrEnDi. (13)C-TrEnDi-modified phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylcholine (PC) lipids extracted from HeLa cells demonstrated greater sensitivity via precursor ion scans (PISs) than their unmodified counterparts. Sphingomyelin (SM) species exhibited neither an increased nor decreased sensitivity following modification. The use of isotopically labeled diazomethane enabled the distinction of modified PE and modified PC species that would yield isobaric species with unlabeled diazomethane. (13)C-TrEnDi created a PE-exclusive PIS of m/z 202.1, two PS-exclusive PISs of m/z 148.1 and m/z 261.1, and a PIS of m/z 199.1 for PC species (observed at odd m/z values) and SM species (observed at even m/z values). The standardized average area increase after TrEnDi modification was 10.72-fold for PE species, 2.36-fold for PC, and 1.05-fold for SM species. The sensitivity increase of PS species was not quantifiable, as there were no unmodified PS species identified prior to derivatization. (13)C-TrEnDi allowed for the identification of 4 PE and 7 PS species as well as the identification and quantitation of an additional 4 PE and 4 PS species that were below the limit of detection (LoD) prior to modification. (13)C-TrEnDi also pushed 24 PE and 6 PC lipids over the limit of quantitation (LoQ) that prior to modification were above the LoD only.


Subject(s)
Diazomethane/chemistry , Phosphatidylcholines/analysis , Phosphatidylethanolamines/analysis , Phosphatidylserines/analysis , Carbon Isotopes , HeLa Cells , Humans , Limit of Detection , Methylation , Phosphatidylcholines/chemistry , Phosphatidylcholines/classification , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/classification , Phosphatidylserines/chemistry , Phosphatidylserines/classification , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/methods
11.
J Labelled Comp Radiopharm ; 57(12): 674-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25318972

ABSTRACT

A method for the preparation of multi-gramme quantities of N-methyl-d3-N-nitroso-p-toluenesulfonamide (Diazald-d3) and N-methyl-(13)C-N-nitroso-p-toluenesulfonamide (Diazald-(13)C) and their conversion to diazomethane-d2 and diazomethane-(13) C, respectively, is presented. This approach uses robust and reliable chemistry, and critically, employs readily commercially available and inexpensive methanol as the label source. Several reactions of labelled diazomethane are also reported, including alkene cyclopropanation, phenol methylation and α-diazoketone formation, as well as deuterium scrambling in the preparation of diazomethane-d2 and subsequent methyl esterification of benzoic acid.


Subject(s)
Deuterium/chemistry , Diazomethane/chemical synthesis , Nitrosamines/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Tosyl Compounds/chemical synthesis , Carbon Isotopes/chemistry , Chemistry Techniques, Synthetic/methods
12.
J Mol Recognit ; 27(12): 755-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25319624

ABSTRACT

Diazomethane (CH(2)N(2)) was used to methylate the non-specific binding sites after molecularly imprinted polymer particles were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker and bisphenol A (BPA) as the template. After diazomethane treatment and subsequent removal of BPA by triethylamine, the treated molecularly imprinted polymer (TMIP) particles were tested for binding selectivity toward BPA and other organic compounds by capillary electrophoresis with ultraviolet detection. Even in the presence of compounds that were positively charged, neutral or negatively charged in the background electrolyte, BPA was selectively bound with the highest efficiency. A significant decrease in the affinity for metformin (MF, a positively charged compound), along with (13) C nuclear magnetic resonance spectra and electrophoretic mobility data, provided strong evidence for the elimination of non-specific -COOH binding sites in the TMIP particles. Only 8% of MF and 16% of diclofenac sodium salt (a negatively charged compound) remained as non-specific bindings because of hydrophobic interactions. Further comparison with poly(methyl methacrylate) revealed the true merits of the TMIP, which exhibited minimal non-specific bindings while preserving a high level of specific binding owing to molecular recognition.


Subject(s)
Diazomethane/chemistry , Molecular Imprinting/methods , Polymers/chemistry , Benzhydryl Compounds/chemistry , Binding Sites , Carbon-13 Magnetic Resonance Spectroscopy , Carboxylic Acids/chemistry , Diclofenac/chemistry , Electrophoresis, Capillary , Esterification , Metformin/chemistry , Methylation , Phenols/chemistry , Polymethyl Methacrylate/chemistry
13.
Anal Chem ; 86(19): 9523-32, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25208053

ABSTRACT

A novel mass spectrometry (MS)-based lipidomics strategy that exposes glycerophospholipids to an ethereal solution of diazomethane and acid, derivatizing them to contain a net fixed, permanent positive charge, is described. The sensitivity of modified lipids to MS detection is enhanced via improved ionization characteristics as well as consolidation of ion dissociation to form one or two strong, characteristic polar headgroup fragments. Our strategy has been optimized to enable a priori prediction of ion fragmentation patterns for four subclasses of modified glycerophospholipid species. Our method enables analyte ionization regardless of proton affinity, thereby decreasing ion suppression and permitting predictable precursor ion-based quantitation with improved sensitivity in comparison to MS-based methods that are currently used on unmodified lipid precursors.


Subject(s)
Diazomethane/chemistry , Mass Spectrometry/methods , Phosphates/chemistry , Glycerophospholipids/chemistry , Limit of Detection , Methylation
14.
Anal Chem ; 86(7): 3291-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24555738

ABSTRACT

Defining cellular processes relies heavily on elucidating the temporal dynamics of proteins. To this end, mass spectrometry (MS) is an extremely valuable tool; different MS-based quantitative proteomics strategies have emerged to map protein dynamics over the course of stimuli. Herein, we disclose our novel MS-based quantitative proteomics strategy with unique analytical characteristics. By passing ethereal diazomethane over peptides on strong cation exchange resin within a microfluidic device, peptides react to contain fixed, permanent positive charges. Modified peptides display improved ionization characteristics and dissociate via tandem mass spectrometry (MS(2)) to form strong a2 fragment ion peaks. Process optimization and determination of reactive functional groups enabled a priori prediction of MS(2) fragmentation patterns for modified peptides. The strategy was tested on digested bovine serum albumin (BSA) and successfully quantified a peptide that was not observable prior to modification. Our method ionizes peptides regardless of proton affinity, thus decreasing ion suppression and permitting predictable multiple reaction monitoring (MRM)-based quantitation with improved sensitivity.


Subject(s)
Amines/chemistry , Diazomethane/chemistry , Peptides/chemistry , Tandem Mass Spectrometry/methods , Animals , Cattle , Limit of Detection , Methylation , Proteomics , Serum Albumin, Bovine/chemistry
15.
Chemistry ; 15(29): 7117-28, 2009 Jul 20.
Article in English | MEDLINE | ID: mdl-19544513

ABSTRACT

The use of molecular editing in the elucidation of the mechanism of action of amphotericin B is presented. A modular strategy for the synthesis of amphotericin B and its designed analogues is developed, which relies on an efficient gram-scale synthesis of various subunits of amphotericin B. A novel method for the coupling of the mycosamine to the aglycone was identified. The implementation of the approach has enabled the preparation of 35-deoxy amphotericin B methyl ester. Investigation of the antifungal activity and efflux-inducing ability of this amphotericin B congener provided new clues to the role of the 35-hydroxy group and is consistent with the involvement of double barrel ion channels in causing electrolyte efflux.


Subject(s)
Amphotericin B/analogs & derivatives , Amphotericin B/chemical synthesis , Hexosamines/chemistry , Amphotericin B/chemistry , Biophysical Phenomena , Glycosides/chemical synthesis , Glycosides/chemistry , Molecular Structure
18.
Org Lett ; 8(7): 1359-62, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16562891

ABSTRACT

[reaction: see text] Chiral bicyclic thioglycolate lactams may be prepared in three steps from inexpensive commercial materials. The resulting lactams may be alkylated three times, twice using basic enolization and once using reductive enolization, to form alpha-quaternary carboxylic acid derivatives in high yield and with high diastereoselectivity. The alkylation products may be cleaved under either acidic or reductive conditions to furnish either carboxylic acids or primary alcohols, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...