Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Zookeys ; (276): 77-84, 2013.
Article in English | MEDLINE | ID: mdl-23794818

ABSTRACT

Large-scale digitization of museum specimens, particularly of insect collections, is becoming commonplace. Imaging increases the accessibility of collections and decreases the need to handle individual, often fragile, specimens. Another potential advantage of digitization is to make it easier to conduct morphometric analyses, but the accuracy of such methods needs to be tested. Here we compare morphometric measurements of scanned images of dragonfly wings to those obtained using other, more traditional, methods. We assume that the destructive method of removing and slide-mounting wings provides the most accurate method of measurement because it eliminates error due to wing curvature. We show that, for dragonfly wings, hand measurements of pinned specimens and digital measurements of scanned images are equally accurate relative to slide-mounted hand measurements. Since destructive slide-mounting is unsuitable for museum collections, and there is a risk of damage when hand measuring fragile pinned specimens, we suggest that the use of scanned images may also be an appropriate method to collect morphometric data from other collected insect species.

2.
J Comp Physiol B ; 180(7): 1033-43, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20364343

ABSTRACT

Green-striped burrowing frogs (Cyclorana alboguttata) can depress their resting metabolism by more than 80% during aestivation. Previous studies have shown that this species is able to withstand long periods of immobilisation during aestivation while apparently maintaining whole muscle mass and contractile performance. The aim of this study was to determine the effect of prolonged aestivation on the levels of metabolic enzymes (CCO, LDH and CS) in functionally distinct skeletal muscles (cruralis, gastrocnemius, sartorius, iliofibularis and rectus abdominus) and liver of C. alboguttata. CS activity was significantly reduced in all tissues except for the cruralis, gastrocnemius and the liver. LDH activity was significantly reduced in the sartorius and rectus abdominus, but remained at control (active) levels in the other tissues. CCO activity was significantly reduced in the gastrocnemius and rectus abdominus, and unchanged in the remaining tissues. Muscle protein was significantly reduced in the sartorius and iliofibularis during aestivation, and unchanged in the remaining muscles. The results suggest that the energy pathways involved in the production and consumption of ATP are remodelled during prolonged aestivation but selective. Remodelling and subsequent down-regulation of metabolic activity seem to target the smaller non-jumping muscles, while the jumping muscles retain enzyme activities at control levels during aestivation. These results suggest a mechanism by which aestivating C. alboguttata are able to maintain metabolic depression while ensuring that the functional capacity of critical muscles is not compromised upon emergence from aestivation.


Subject(s)
Amphibian Proteins/metabolism , Anura/metabolism , Down-Regulation , Energy Metabolism , Estivation/physiology , Liver/enzymology , Muscle, Skeletal/enzymology , Animals , Body Size , Citrate (si)-Synthase/metabolism , Electron Transport Complex IV/metabolism , L-Lactate Dehydrogenase/metabolism , Muscle, Skeletal/metabolism , Organ Specificity , Queensland , Random Allocation , Time Factors , Water/analysis
3.
J Exp Biol ; 212(Pt 22): 3664-72, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19880728

ABSTRACT

We investigated the effect of prolonged immobilisation of six and nine months duration on the morphology and antioxidant biochemistry of skeletal muscles in the amphibian aestivator Cyclorana alboguttata. We hypothesised that, in the event of atrophy occurring during aestivation, larger jumping muscles were more likely to be preserved over smaller non-jumping muscles. Whole muscle mass (g), muscle cross-sectional area (CSA) (microm(2)), water content (%) and myofibre number (per mm(2)) remained unchanged in the cruralis muscle after six to nine months of aestivation; however, myofibre area (microm(2)) was significantly reduced. Whole muscle mass, water content, myofibre number and myofibre CSA remained unchanged in the gastrocnemius muscle after six to nine months of aestivation. However, iliofibularis dry muscle mass, whole muscle CSA and myofibre CSA was significantly reduced during aestivation. Similarly, sartorius dry muscle mass, water content and whole muscle CSA was significantly reduced during aestivation. Endogenous antioxidants were maintained at control levels throughout aestivation in all four muscles. The results suggest changes to muscle morphology during aestivation may occur when lipid reserves have been depleted and protein becomes the primary fuel substrate for preserving basal metabolic processes. Muscle atrophy as a result of this protein catabolism may be correlated with locomotor function, with smaller non-jumping muscles preferentially used as a protein source during fasting over larger jumping muscles. Higher levels of endogenous antioxidants in the jumping muscles may confer a protective advantage against oxidative damage during aestivation; however, it is not clear whether they play a role during aestivation or upon resumption of normal metabolic activity.


Subject(s)
Estivation/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Muscular Atrophy/physiopathology , Ranidae , Animals , Antioxidants/metabolism , Humans , Muscle, Skeletal/anatomy & histology , Random Allocation , Ranidae/anatomy & histology , Ranidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...