Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(1): 1-17, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-23941686

ABSTRACT

Cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester and triglycerides between plasma lipoprotein particles HDL and LDL/VLDL, resulting in equilibration between these lipoprotein fractions. Therapy that modulates HDL metabolism to increase HDL-c levels could be an effective strategy to reduce residual cardiovascular risk since it is estimated that for each mg/dL increase in plasma HDL cholesterol, there could be a 2-3% decrease in cardiovascular risk. Modification of the lipoprotein profile by CETP inhibitors is promising, but the beneficial effect of reducing coronary heart disease risk has not yet been proven. To date, four CETP inhibitors have advanced to phase 3 cardiovascular outcome clinical trials, and two have been terminated for off-target adverse effects and lack of efficacy. This perspective will summarize recent events, new research developments, and the discovery of new classes of CETP inhibitors.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Cardiovascular Diseases/prevention & control , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Animals , Anticholesteremic Agents/therapeutic use , Benzodiazepines/chemical synthesis , Benzodiazepines/therapeutic use , Cholesterol, HDL/blood , Clinical Trials, Phase III as Topic , Drug Discovery , Humans , Oxazolidinones/chemical synthesis , Oxazolidinones/therapeutic use , Risk Factors , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 22(9): 3056-62, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22497761

ABSTRACT

This Letter describes the discovery and SAR optimization of 1,5-tetrahydronaphthyridines, a new class of potent CETP inhibitors. The effort led to the identification of 21b and 21d with in vitro human plasma CETP inhibitory activity in the nanomolar range (IC(50)=23 and 22nM, respectively). Both 21b and 21d exhibited robust HDL-c increase in hCETP/hApoA1 dual heterozygous mice model.


Subject(s)
Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Naphthyridines/pharmacology , Animals , Cholesterol, HDL , Dose-Response Relationship, Drug , Drug Design , Humans , Inhibitory Concentration 50 , Mice , Naphthyridines/chemical synthesis , Structure-Activity Relationship
4.
J Lipid Res ; 52(12): 2169-2176, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21957197

ABSTRACT

Cholesteryl ester transfer protein (CETP) catalyses the exchange of cholesteryl ester and triglyceride between HDL and apoB containing lipoprotein particles. The role of CETP in modulating plasma HDL cholesterol levels in humans is well established and there have been significant efforts to develop CETP inhibitors to increase HDL cholesterol for the treatment of coronary artery disease. These efforts, however, have been hampered by the fact that most CETP inhibitors either have low potency or have undesirable side effects. In this study, we describe a novel benzazepine compound evacetrapib (LY2484595), which is a potent and selective inhibitor of CETP both in vitro and in vivo. Evacetrapib inhibited human recombinant CETP protein (5.5 nM IC(50)) and CETP activity in human plasma (36 nM IC(50)) in vitro. In double transgenic mice expressing human CETP and apoAI, evacetrapib exhibited an ex vivo CETP inhibition ED(50) of less than 5 mg/kg at 8 h post oral dose and significantly elevated HDL cholesterol. Importantly, no blood pressure elevation was observed in rats dosed with evacetrapib at high exposure multiples compared with the positive control, torcetrapib. In addition, in a human adrenal cortical carcinoma cell line (H295R cells), evacetrapib did not induce aldosterone or cortisol biosynthesis whereas torcetrapib dramatically induced aldosterone and cortisol biosynthesis. Our data indicate that evacetrapib is a potent and selective CETP inhibitor without torcetrapib-like off-target liabilities. Evacetrapib is currently in phase II clinical development.


Subject(s)
Benzodiazepines/adverse effects , Benzodiazepines/pharmacology , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL/blood , Aldosterone/metabolism , Animals , Blood Pressure/drug effects , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred NOD , Rats , Substrate Specificity
5.
Lipids ; 43(7): 611-8, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18481130

ABSTRACT

Peroxisome proliferator-activated receptor alpha (PPARalpha) belongs to the nuclear receptor superfamily that regulates multiple target genes involved in lipid metabolism. Cholesterol ester transfer protein (CETP) is a secreted glycoprotein that modifies high-density lipoprotein (HDL) particles. In humans, plasma CETP activity is inversely correlated with HDL cholesterol levels. We report here that PPARalpha agonists increase CETP mRNA, protein and accordingly its activity. In a human CETP transgenic animal model harboring the natural flanking regions (Jiang et al. in J Clin Investigat 90:1290-1295, 1992), both fenofibrate and a specific synthetic PPARalpha agonist LY970 elevated human CETP mRNA in liver, serum protein and CETP activity. In hamsters, the endogenous liver CETP mRNA level and the serum CETP activity were dose-dependently upregulated by fenofibrate. In addition Wy14643, a PPARalpha agonist, also significantly elevated CETP mRNA and activity. In a carcinoma cell line of hepatic origin, HepG2 cells, overexpression of PPARalpha resulted in increased CETP mRNA and agonist treatment further elevated CETP mRNA levels. We conclude that PPARalpha agonists upregulate CETP expression and activity and may play an important role in PPARalpha (agonist mediated HDL cholesterol homeostasis in humans.


Subject(s)
Cholesterol Ester Transfer Proteins/metabolism , PPAR alpha/agonists , PPAR alpha/metabolism , Animals , Cells, Cultured , Cholesterol Ester Transfer Proteins/drug effects , Cholesterol Ester Transfer Proteins/genetics , Cricetinae , Fenofibrate/pharmacology , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Transgenic , PPAR alpha/genetics , RNA, Messenger/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...