Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1385484, 2024.
Article in English | MEDLINE | ID: mdl-38803496

ABSTRACT

Breast cancer poses one of the largest threats to women's health. Treatment continues to improve for all the subtypes of breast cancer, but some subtypes, such as triple negative breast cancer, still present a significant treatment challenge. Additionally, metastasis and local recurrence are two prevalent problems in breast cancer treatment. A newer type of therapy, immunotherapy, may offer alternatives to traditional treatments for difficult-to-treat subtypes. Immunotherapy engages the host's immune system to eradicate disease, with the potential to induce long-lasting, durable responses. However, systemic immunotherapy is only approved in a limited number of indications, and it benefits only a minority of patients. Furthermore, immune related toxicities following systemic administration of potent immunomodulators limit dosing and, consequently, efficacy. To address these safety considerations and improve treatment efficacy, interest in local delivery at the site of the tumor has increased. Numerous intratumorally delivered immunotherapeutics have been and are being explored clinically and preclinically, including monoclonal antibodies, cellular therapies, viruses, nucleic acids, cytokines, innate immune agonists, and bacteria. This review summarizes the current and past intratumoral immunotherapy clinical landscape in breast cancer as well as current progress that has been made in preclinical studies, with a focus on delivery parameters and considerations.


Subject(s)
Breast Neoplasms , Immunotherapy , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Immunotherapy/methods , Animals
2.
ACS Biomater Sci Eng ; 10(2): 905-920, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38240491

ABSTRACT

Localized delivery of immunotherapeutics within a tumor has the potential to reduce systemic toxicities and improve treatment outcomes in cancer patients. Unfortunately, local retention of therapeutics following intratumoral injection is problematic and is insufficiently considered. Dense tumor architectures and high interstitial pressures rapidly exclude injections of saline and other low-viscosity solutions. Hydrogel-based delivery systems, on the other hand, can resist shear forces that cause tumor leakage and thus stand to improve the local retention of coformulated therapeutics. The goal of the present work was to construct a novel, injectable hydrogel that could be tuned for localized immunotherapy delivery. A chitosan-based hydrogel, called XCSgel, was developed and subsequently characterized. Nuclear magnetic resonance studies were performed to describe the chemical properties of the new entity, while cryo-scanning electron microscopy allowed for visualization of the hydrogel's cross-linked network. Rheology experiments demonstrated that XCSgel was shear-thinning and self-healing. Biocompatibility studies, both in vitro and in vivo, showed that XCSgel was nontoxic and induced transient mild-to-moderate inflammation. Release studies revealed that coformulated immunotherapeutics were released over days to weeks in a charge-dependent manner. Overall, XCSgel displayed several clinically important features, including injectability, biocompatibility, and imageability. Furthermore, the properties of XCSgel could also be controlled to tune the release of coformulated immunotherapeutics.


Subject(s)
Chitosan , Neoplasms , Humans , Hydrogels/chemistry , Injections
3.
Cancers (Basel) ; 15(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190138

ABSTRACT

Focal ablation technologies are routinely used in the clinical management of inoperable solid tumors but they often result in incomplete ablations leading to high recurrence rates. Adjuvant therapies, capable of safely eliminating residual tumor cells, are therefore of great clinical interest. Interleukin-12 (IL-12) is a potent antitumor cytokine that can be localized intratumorally through coformulation with viscous biopolymers, including chitosan (CS) solutions. The objective of this research was to determine if localized immunotherapy with a CS/IL-12 formulation could prevent tumor recurrence after cryoablation (CA). Tumor recurrence and overall survival rates were assessed. Systemic immunity was evaluated in spontaneously metastatic and bilateral tumor models. Temporal bulk RNA sequencing was performed on tumor and draining lymph node (dLN) samples. In multiple murine tumor models, the addition of CS/IL-12 to CA reduced recurrence rates by 30-55%. Altogether, this cryo-immunotherapy induced complete durable regression of large tumors in 80-100% of treated animals. Additionally, CS/IL-12 prevented lung metastases when delivered as a neoadjuvant to CA. However, CA plus CS/IL-12 had minimal antitumor activity against established, untreated abscopal tumors. Adjuvant anti-PD-1 therapy delayed the growth of abscopal tumors. Transcriptome analyses revealed early immunological changes in the dLN, followed by a significant increase in gene expression associated with immune suppression and regulation. Cryo-immunotherapy with localized CS/IL-12 reduces recurrences and enhances the elimination of large primary tumors. This focal combination therapy also induces significant but limited systemic antitumor immunity.

4.
Front Immunol ; 13: 858904, 2022.
Article in English | MEDLINE | ID: mdl-35592324

ABSTRACT

Despite the remarkable efficacy of currently approved COVID-19 vaccines, there are several opportunities for continued vaccine development against SARS-CoV-2 and future lethal respiratory viruses. In particular, restricted vaccine access and hesitancy have limited immunization rates. In addition, current vaccines are unable to prevent breakthrough infections, leading to prolonged virus circulation. To improve access, a subunit vaccine with enhanced thermostability was designed to eliminate the need for an ultra-cold chain. The exclusion of infectious and genetic materials from this vaccine may also help reduce vaccine hesitancy. In an effort to prevent breakthrough infections, intranasal immunization to induce mucosal immunity was explored. A prototype vaccine comprised of receptor-binding domain (RBD) polypeptides formulated with additional immunoadjuvants in a chitosan (CS) solution induced high levels of RBD-specific antibodies in laboratory mice after 1 or 2 immunizations. Antibody responses were durable with high titers persisting for at least five months following subcutaneous vaccination. Serum anti-RBD antibodies contained both IgG1 and IgG2a isotypes suggesting that the vaccine induced a mixed Th1/Th2 response. RBD vaccination without CS formulation resulted in minimal anti-RBD responses. The addition of CpG oligonucleotides to the CS plus RBD vaccine formulation increased antibody titers more effectively than interleukin-12 (IL-12). Importantly, generated antibodies were cross-reactive against RBD mutants associated with SARS-CoV-2 variants of concern, including alpha, beta and delta variants, and inhibited binding of RBD to its cognate receptor angiotensin converting enzyme 2 (ACE2). With respect to stability, vaccines did not lose activity when stored at either room temperature (21-22°C) or 4°C for at least one month. When delivered intranasally, vaccines induced RBD-specific mucosal IgA antibodies, which may protect against breakthrough infections in the upper respiratory tract. Altogether, data indicate that the designed vaccine platform is versatile, adaptable and capable of overcoming key constraints of current COVID-19 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Mice , Vaccines, Subunit
5.
Front Immunol ; 11: 575597, 2020.
Article in English | MEDLINE | ID: mdl-33178203

ABSTRACT

Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.


Subject(s)
Antineoplastic Agents/administration & dosage , Genetic Therapy , Immunotherapy , Interleukin-12/administration & dosage , Neoplasms/therapy , Animals , Antineoplastic Agents/adverse effects , Drug Carriers , Drug Compounding , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Vectors , Humans , Immunotherapy/adverse effects , Interleukin-12/adverse effects , Interleukin-12/genetics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Treatment Outcome , Tumor Microenvironment
6.
Macromol Biosci ; 19(1): e1800281, 2019 01.
Article in English | MEDLINE | ID: mdl-30303631

ABSTRACT

Hydrogel biomaterials are pervasive in biomedical use. Applications of these soft materials range from contact lenses to drug depots to scaffolds for transplanted cells. A subset of hydrogels is prepared from physical cross-linking mediated by host-guest interactions. Host macrocycles, the most recognizable supramolecular motif, facilitate complex formation with an array of guests by inclusion in their portal. Commonly, an appended macrocycle forms a complex with appended guests on another polymer chain. The formation of poly(pseudo)rotaxanes is also demonstrated, wherein macrocycles are threaded by a polymer chain to give rise to physical cross-linking by secondary non-covalent interactions or polymer jamming. Host-guest supramolecular hydrogels lend themselves to a variety of applications resulting from their dynamic properties that arise from non-covalent supramolecular interactions, as well as engineered responsiveness to external stimuli. These are thus an exciting new class of materials.


Subject(s)
Biocompatible Materials , Cells, Immobilized/transplantation , Contact Lenses, Hydrophilic , Cyclodextrins , Drug Delivery Systems/methods , Hydrogels , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Cyclodextrins/chemistry , Cyclodextrins/therapeutic use , Humans , Hydrogels/chemistry , Hydrogels/therapeutic use , Rotaxanes
SELECTION OF CITATIONS
SEARCH DETAIL
...