Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 167: 115592, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778272

ABSTRACT

INTRODUCTION: Glycogen synthase kinase 3 (GSK-3) has been proposed as a novel cancer target due to its regulating role in both tumor and immune cells. However, the connection between GSK-3 and immunoevasive contexture, including tumor budding (TB) has not been previously examined. METHODS: we investigated the expression levels of total GSK-3 as well as its isoforms (GSK-3ß and GSK-3α) and examined their potential correlation with TB grade and the programmed cell death-ligand 1 (PD-L1) in colorectal cancer (CRC) tumor samples. Additionally, we compared the efficacy of GSK-3-inhibition with PD-1/PD-L1 blockade in humanized patient-derived (PDXs) xenografts models of high-grade TB CRC. RESULTS: we show that high-grade (BD3) TB CRC is associated with elevated expression levels of total GSK-3, specifically the GSK-3ß isoform, along with increased expression of PD-L1 in tumor cells. Moreover, we define an improved risk stratification of CRC patients based on the presence of GSK-3+/PD-L1+/BD3 tumors, which are associated with a worse prognosis. Significantly, in contrast to the PD-L1/PD-1 blockade approach, the inhibition GSK-3 demonstrated a remarkable enhancement in the antitumor response. This was achieved through the reduction of tumor buds via necrosis and apoptosis pathways, along with a notable increase of activated tumor-infiltrating CD8+ T cells, NK cells, and CD4- CD8- T cells. CONCLUSIONS: our study provides compelling evidence for the clinical significance of GSK-3 expression and TB grade in risk stratification of CRC patients. Moreover, our findings strongly support GSK-3 inhibition as an effective therapy specifically targeting high-grade TB in CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , Glycogen Synthase Kinase 3 , Glycogen Synthase Kinase 3 beta , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Clinical Relevance , Colorectal Neoplasms/pathology
2.
J Pathol ; 260(3): 261-275, 2023 07.
Article in English | MEDLINE | ID: mdl-37017456

ABSTRACT

S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme that has been suggested to play a tumor suppressor role, although the mechanisms responsible are still largely unclear. In this study, we show that GSNOR deficiency in tumors is associated with poor prognostic histopathological features and poor survival in patients with colorectal cancer (CRC). GSNOR-low tumors were characterized by an immunosuppressive microenvironment with exclusion of cytotoxic CD8+ T cells. Notably, GSNOR-low tumors exhibited an immune evasive proteomic signature along with an altered energy metabolism characterized by impaired oxidative phosphorylation (OXPHOS) and energetic dependence on glycolytic activity. CRISPR-Cas9-mediated generation of GSNOR gene knockout (KO) CRC cells confirmed in vitro and in vivo that GSNOR-deficiency conferred higher tumorigenic and tumor-initiating capacities. Moreover, GSNOR-KO cells possessed enhanced immune evasive properties and resistance to immunotherapy, as revealed following xenografting them into humanized mouse models. Importantly, GSNOR-KO cells were characterized by a metabolic shift from OXPHOS to glycolysis to produce energy, as indicated by increased lactate secretion, higher sensitivity to 2-deoxyglucose (2DG), and a fragmented mitochondrial network. Real-time metabolic analysis revealed that GSNOR-KO cells operated close to their maximal glycolytic rate, as a compensation for lower OXPHOS levels, explaining their higher sensitivity to 2DG. Remarkably, this higher susceptibility to glycolysis inhibition with 2DG was validated in patient-derived xenografts and organoids from clinical GSNOR-low tumors. In conclusion, our data support the idea that metabolic reprogramming induced by GSNOR deficiency is an important mechanism for tumor progression and immune evasion in CRC and that the metabolic vulnerabilities associated with the deficiency of this denitrosylase can be exploited therapeutically. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms , Oxidoreductases , Mice , Animals , Humans , CD8-Positive T-Lymphocytes , Immune Evasion , Proteomics , Tumor Microenvironment
3.
Lab Invest ; 101(3): 292-303, 2021 03.
Article in English | MEDLINE | ID: mdl-33262438

ABSTRACT

Cancer stem cells (CSCs) are involved in the resistance of estrogen (ER)-positive breast tumors against endocrine therapy. On the other hand, nitric oxide (NO) plays a relevant role in CSC biology, although there are no studies addressing how this important signaling molecule may contribute to resistance to antihormonal therapy in ER+ breast cancer. Therefore, we explored whether targeting NO in ER+ breast cancer cells impacts CSC subpopulation and sensitivity to hormonal therapy with tamoxifen. NO was targeted in ER+ breast cancer cells by specific NO depletion and NOS2 silencing and mammosphere formation capacity, stem cell markers and tamoxifen sensitivity were analyzed. An orthotopic breast tumor model in mice was also performed to analyze the efficacy of NO-targeted therapy plus tamoxifen. Kaplan-Meier curves were made to analyze the association of NOS2 gene expression with survival of ER+ breast cancer patients treated with tamoxifen. Our results show that targeting NO inhibited mamosphere formation, CSC markers expression and increased the antitumoral efficacy of tamoxifen in ER+ breast cancer cells, whereas tamoxifen-resistant cells displayed higher expression levels of NOS2 and Notch-1 compared with parental cells. Notably, NO-targeted therapy plus tamoxifen was more effective than either treatment alone in an orthotopic breast tumor model in immunodeficient mice. Furthermore, low NOS2 expression was significantly associated with a higher metastasis-free survival in ER+ breast cancer patients treated with tamoxifen. In conclusion, our data support that NO-targeted therapy in ER+ breast cancer may contribute to increase the efficacy of antihormonal therapy avoiding the development of resistance to these treatments.


Subject(s)
Antineoplastic Agents, Hormonal , Breast Neoplasms , Nitric Oxide , Receptors, Estrogen/metabolism , Tamoxifen , Animals , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Silencing , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Signal Transduction/drug effects , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
4.
Front Med (Lausanne) ; 7: 264, 2020.
Article in English | MEDLINE | ID: mdl-32719800

ABSTRACT

Tumor budding has been found to be of prognostic significance for several cancers, including colorectal cancer (CRC). Additionally, the molecular classification of CRC has led to the identification of different immune microenvironments linked to distinct prognosis and therapeutic response. However, the association between tumor budding and the different molecular subtypes of CRC and distinct immune profiles have not been fully elucidated. This study focused, firstly, on the validation of derived xenograft models (PDXs) for the evaluation of tumor budding and their human counterparts and, secondly, on the association between tumor budding and the immune tumor microenvironment by the analysis of gene expression signatures of immune checkpoints, Toll-like receptors (TLRs), and chemokine families. Clinical CRC samples with different grades of tumor budding and their corresponding PDXs were included in this study. Tumor budding grade was reliably reproduced in early passages of PDXs, and high-grade tumor budding was intimately related with a poor-prognosis CMS4 mesenchymal subtype. In addition, an upregulation of negative regulatory immune checkpoints (PDL1, TIM-3, NOX2, and IDO1), TLRs (TLR1, TLR3, TLR4, and TLR6), and chemokine receptors and ligands (CXCR2, CXCR4, CXCL1, CXCL2, CXCL6, and CXCL9) was detected in high-grade tumor budding in both human samples and their corresponding xenografts. Our data support a close link between high-grade tumor budding in CRC and a distinctive immune-suppressive microenvironment promoting tumor invasion, which may have a determinant role in the poor prognosis of the CMS4 mesenchymal subtype. In addition, our study demonstrates that PDX models may constitute a robust preclinical platform for the development of novel therapies directed against tumor budding in CRC.

SELECTION OF CITATIONS
SEARCH DETAIL
...