Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1221246, 2023.
Article in English | MEDLINE | ID: mdl-38035328

ABSTRACT

Introduction: Farnesol, derived from farnesyl pyrophosphate in the sterols biosynthetic pathway, is a molecule with three unsaturations and four possible isomers. Candida albicans predominantly secretes the trans, trans-farnesol (t, t-FOH) isomer, known for its role in regulating the virulence of various fungi species and modulating morphological transition processes. Notably, the evolutionary divergence in sterol biosynthesis between fungi, including Candida albicans, and trypanosomatids resulted in the synthesis of sterols with the ergostane skeleton, distinct from cholesterol. This study aims to assess the impact of exogenously added trans, trans-farnesol on the proliferative ability of Leishmania amazonensis and to identify its presence in the lipid secretome of the parasite. Methods: The study involved the addition of exogenous trans, trans-farnesol to evaluate its interference with the proliferation of L. amazonensis promastigotes. Proliferation, cell cycle, DNA fragmentation, and mitochondrial functionality were assessed as indicators of the effects of trans, trans-farnesol. Additionally, lipid secretome analysis was conducted, focusing on the detection of trans, trans-farnesol and related products derived from the precursor, farnesyl pyrophosphate. In silico analysis was employed to identify the sequence for the farnesene synthase gene responsible for producing these isoprenoids in the Leishmania genome. Results: Exogenously added trans, trans-farnesol was found to interfere with the proliferation of L. amazonensis promastigotes, inhibiting the cell cycle without causing DNA fragmentation or loss of mitochondrial functionality. Despite the absence of trans, trans-farnesol in the culture supernatant, other products derived from farnesyl pyrophosphate, specifically α-farnesene and ß-farnesene, were detected starting on the fourth day of culture, continuing to increase until the tenth day. Furthermore, the identification of the farnesene synthase gene in the Leishmania genome through in silico analysis provided insights into the enzymatic basis of isoprenoid production. Discussion: The findings collectively offer the first insights into the mechanism of action of farnesol on L. amazonensis. While trans, trans-farnesol was not detected in the lipid secretome, the presence of α-farnesene and ß-farnesene suggests alternative pathways or modifications in the isoprenoid metabolism of the parasite. The inhibitory effects on proliferation and cell cycle without inducing DNA fragmentation or mitochondrial dysfunction raise questions about the specific targets and pathways affected by exogenous trans, trans-farnesol. The identification of the farnesene synthase gene provides a molecular basis for understanding the synthesis of related isoprenoids in Leishmania. Further exploration of these mechanisms may contribute to the development of novel therapeutic strategies against Leishmania infections.


Subject(s)
Leishmania mexicana , Leishmania , Farnesol/metabolism , Farnesol/pharmacology , Leishmania mexicana/metabolism , Leishmania/metabolism , Sterols/analysis , Sterols/pharmacology , Candida albicans
2.
PLoS One ; 11(9): e0163240, 2016.
Article in English | MEDLINE | ID: mdl-27631083

ABSTRACT

Dengue disease has emerged as a major public health issue across tropical and subtropical countries. Infections caused by dengue virus (DENV) can evolve to life-threatening forms, resulting in about 20,000 deaths every year worldwide. Several animal models have been described concerning pre-clinical stages in vaccine development against dengue, each of them presenting limitations and advantages. Among these models, a traditional approach is the inoculation of a mouse-brain adapted DENV variant in immunocompetent animals by the intracerebral (i.c.) route. Despite the historical usage and relevance of this model for vaccine testing, little is known about the mechanisms by which the protection is developed upon vaccination. To cover this topic, a DNA vaccine based on the DENV non-structural protein 1 (pcTPANS1) was considered and investigations were focused on the induced T cell-mediated immunity against i.c.-DENV infection. Immunophenotyping assays by flow cytometry revealed that immunization with pcTPANS1 promotes a sustained T cell activation in spleen of i.c.-infected mice. Moreover, we found that the downregulation of CD45RB on T cells, as an indicator of cell activation, correlated with absence of morbidity upon virus challenge. Adoptive transfer procedures supported by CFSE-labeled cell tracking showed that NS1-specific T cells induced by vaccination, proliferate and migrate to peripheral organs of infected mice, such as the liver. Additionally, in late stages of infection (from the 7th day onwards), vaccinated mice also presented reduced levels of circulating IFN-γ and IL-12p70 in comparison to non-vaccinated animals. In conclusion, this work presented new aspects about the T cell-mediated immunity concerning DNA vaccination with pcTPANS1 and the i.c. infection model. These insights can be explored in further studies of anti-dengue vaccine efficacy.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , T-Lymphocytes/immunology , Vaccines, DNA/immunology , Viral Nonstructural Proteins/immunology , Animals , Injections, Intraventricular , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Vaccines, DNA/administration & dosage
3.
PLoS Negl Trop Dis ; 9(12): e0004277, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26650916

ABSTRACT

Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.

4.
Immunobiology ; 213(6): 481-92, 2008.
Article in English | MEDLINE | ID: mdl-18514750

ABSTRACT

P2X7 receptor activation is involved in a number of pro-inflammatory responses in macrophages and other immune cells. Their expression can be positively modulated with lipopolysaccharide (LPS) and TNFalpha, reinforcing their role during inflammation. We investigated the effect of substances capable of recruiting macrophages into the peritoneal cavity of mice (mineral oil and thioglycolate) on P2X7 receptor expression and function, addressing whether these stimuli can interfere with multinucleated giant cell (MGC) formation, ATP-induced apoptosis, plasma membrane permeabilization and nitric oxide production. It was demonstrated that mineral oil treatment reduces P2X7-dependent MGC formation, whereas thioglycolate treatment does not. Mineral oil treatment reduced P2X7 receptor expression, down-modulating ATP-induced apoptosis, permeabilization and nitric oxide production. In conclusion, mineral oil down modulated P2X7 expression and consequently P2X7-associated phenomena, but thioglycolate did not. These effects might be associated with the unpleasant side effects already described during long-term administration of mineral oil for cosmetic purposes or as a laxative and could be useful in understanding the mechanism of recycling and modulation of P2 receptors present in other situations of immunopathological interest.


Subject(s)
Giant Cells/immunology , Macrophages, Peritoneal/immunology , Mineral Oil/pharmacology , Receptors, Purinergic P2/metabolism , Thioglycolates/pharmacology , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Cell Membrane Permeability , Giant Cells/metabolism , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Receptors, Purinergic P2/deficiency , Receptors, Purinergic P2X7
5.
J Infect Dis ; 192(6): 1127-34, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16107969

ABSTRACT

Apoptosis mediated by Fas ligand (FasL) initiates inflammation characterized by neutrophilic infiltration. Neutrophils undergo apoptosis and are ingested by macrophages. Clearance of dead neutrophils leads to prostaglandin- and transforming growth factor-beta-dependent replication of Leishmania major in macrophages from susceptible mice. How L. major induces neutrophil turnover in a physiological setting is unknown. We show that BALB/c FasL-sufficient mice are more susceptible to L. major infection than are FasL-deficient mice. FasL promotes the apoptosis of infected resident macrophages and attracts neutrophils. Furthermore, FasL-sufficient neutrophils exacerbate L. major replication in macrophages, whereas FasL-deficient neutrophils induce parasite killing. These contrasting effects are due to delaying apoptosis and the clearance of FasL-deficient neutrophils. The transfer of neutrophils exacerbates infection in FasL-sufficient mice but reduces infection in FasL-deficient mice. Depletion of neutrophils abolishes the susceptibility of FasL-sufficient mice. These data illustrate a deleterious role of the FasL-mediated turnover of neutrophils on L. major infection.


Subject(s)
Leishmania major/growth & development , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Membrane Glycoproteins/immunology , Neutrophils/immunology , Neutrophils/pathology , Animals , Apoptosis , Cell Death/immunology , Disease Models, Animal , Disease Susceptibility , Fas Ligand Protein , Leishmaniasis, Cutaneous/genetics , Leishmaniasis, Cutaneous/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout
6.
Microbes Infect ; 5(15): 1363-71, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14670449

ABSTRACT

In the acute phase of Trypanosoma cruzi infection, there is dramatic atrophy of the thymus. However, the pathways involved in this change have not yet been identified. This event is mainly characterized by a massive loss of cortical CD4+/CD8+ double-positive cells, but also by other structural and functional alterations in the organ. A number of molecules, including extracellular ATP, have been suggested to play a role in the selective processes that take place in the thymus. ATP and analogues trigger many different cellular responses in thymocytes and other cell types, such as the opening of plasma membrane cation channels and a pore that may induce cell death. Herein, we investigated the possible involvement of extracellular ATP in thymus atrophy induced by infection with T. cruzi. We observed that ATP induces an increase in plasma membrane permeabilization and cellular death in CD4+/CD8+ double-positive thymocytes collected from infected mice during the atrophy phase. No differences were observed prior to the atrophy phase or during the chronic phase. Our results indicate that P2Z/P2X7 receptors may play a central role in thymus atrophy during T. cruzi infection.


Subject(s)
Adenosine Triphosphate/pharmacology , Apoptosis , Chagas Disease/pathology , Thymus Gland/drug effects , Trypanosoma cruzi , Animals , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Chagas Disease/immunology , Mice , Thymus Gland/immunology , Thymus Gland/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...