Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 25(6): 1483-1496, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35478314

ABSTRACT

Predicting the impacts of multiple stressors is important for informing ecosystem management but is impeded by a lack of a general framework for predicting whether stressors interact synergistically, additively or antagonistically. Here, we use process-based models to study how interactions generalise across three levels of biological organisation (physiological, population and consumer-resource) for a two-stressor experiment on a seagrass model system. We found that the same underlying processes could result in synergistic, additive or antagonistic interactions, with interaction type depending on initial conditions, experiment duration, stressor dynamics and consumer presence. Our results help explain why meta-analyses of multiple stressor experimental results have struggled to identify predictors of consistently non-additive interactions in the natural environment. Experiments run over extended temporal scales, with treatments across gradients of stressor magnitude, are needed to identify the processes that underpin how stressors interact and provide useful predictions to management.


Subject(s)
Ecosystem , Environment
2.
Proc Biol Sci ; 287(1926): 20200421, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32370677

ABSTRACT

Anthropogenic environmental changes, or 'stressors', increasingly threaten biodiversity and ecosystem functioning worldwide. Multiple-stressor research is a rapidly expanding field of science that seeks to understand and ultimately predict the interactions between stressors. Reviews and meta-analyses of the primary scientific literature have largely been specific to either freshwater, marine or terrestrial ecology, or ecotoxicology. In this cross-disciplinary study, we review the state of knowledge within and among these disciplines to highlight commonality and division in multiple-stressor research. Our review goes beyond a description of previous research by using quantitative bibliometric analysis to identify the division between disciplines and link previously disconnected research communities. Towards a unified research framework, we discuss the shared goal of increased realism through both ecological and temporal complexity, with the overarching aim of improving predictive power. In a rapidly changing world, advancing our understanding of the cumulative ecological impacts of multiple stressors is critical for biodiversity conservation and ecosystem management. Identifying and overcoming the barriers to interdisciplinary knowledge exchange is necessary in rising to this challenge. Division between ecosystem types and disciplines is largely a human creation. Species and stressors cross these borders and so should the scientists who study them.


Subject(s)
Ecology/methods , Biodiversity , Conservation of Natural Resources , Ecosystem , Goals , Humans
3.
Sci Total Environ ; 700: 134518, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31698271

ABSTRACT

Ongoing and projected climate change is likely to greatly alter co-occurring stressor mechanisms, yet these potential interactions remain poorly understood in natural freshwater systems worldwide. As the global biodiversity crisis deepens, successful conservation efforts will hinge on developing mechanistic multiple stressor frameworks that have been ground-truthed in natural systems containing complex species dynamics and ecological processes. Our study examined the combined and interacting effects of potential climate and land use stressors on boreal stream fishes using data from over 300 catchments across a broad 250,000 km2 region. To characterize boreal fish community health, we examined four indicators including species richness, total catch per unit effort, the proportion of lithophilic spawners (fish sensitive to sedimentation), and the assemblage tolerance index which provides a measurement of the overall community tolerance to disturbance. Land use stressors included total anthropogenic land use area and linear disturbance at multiple watershed scales as well as two site-specific habitat degradation indicators (dissolved oxygen and the proportion of fine substrate). Overall community richness and productivity were not negatively related to land use changes indicating potential compensatory dynamics (e.g. where intolerant species are replaced with more tolerant species as habitat quality degrades). In contrast, we observed declines for sensitive species, including highly valued salmonids, that varied depending on interactions between local climate, land use, and stream type. Sensitive species declines were concentrated in regions experiencing increased land use and warming, whereas increases were observed in cooler regions consistent with a subsidy-stress response. In addition, lithophilic spawners declined in watersheds experiencing warmer and wetter conditions owing to potential indirect effects on spawning habitat quality. Results from our study provide novel insight into complex climate and land use interactions occurring across a broad, real-world landscape, and highlight the potential for amplified species declines under future warming and land use scenarios.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Fishes , Rivers , Animals , Taiga
4.
Environ Int ; 102: 125-137, 2017 May.
Article in English | MEDLINE | ID: mdl-28249740

ABSTRACT

Cumulative environmental impacts driven by anthropogenic stressors lead to disproportionate effects on indigenous communities that are reliant on land and water resources. Understanding and counteracting these effects requires knowledge from multiple sources. Yet the combined use of Traditional Knowledge (TK) and Scientific Knowledge (SK) has both technical and philosophical hurdles to overcome, and suffers from inherently imbalanced power dynamics that can disfavour the very communities it intends to benefit. In this article, we present a 'two-eyed seeing' approach for co-producing and blending knowledge about ecosystem health by using an adapted Bayesian Belief Network for the Slave River and Delta region in Canada's Northwest Territories. We highlight how bridging TK and SK with a combination of field data, interview transcripts, existing models, and expert judgement can address key questions about ecosystem health when considerable uncertainty exists. SK indicators (e.g., bird counts, mercury in fish, water depth) were graded as moderate, whereas TK indicators (e.g., bird usage, fish aesthetics, changes to water flow) were graded as being poor in comparison to the past. SK indicators were predominantly spatial (i.e., comparing to other locations) while the TK indicators were predominantly temporal (i.e., comparing across time). After being populated by 16 experts (local harvesters, Elders, governmental representatives, and scientists) using both TK and SK, the model output reported low probabilities that the social-ecological system is healthy as it used to be. We argue that it is novel and important to bridge TK and SK to address the challenges of environmental change such as the cumulative impacts of multiple stressors on ecosystems and the services they provide. This study presents a critical social-ecological tool for widening the evidence-base to a more holistic understanding of the system dynamics of multiple environmental stressors in ecosystems and for developing more effective knowledge-inclusive partnerships between indigenous communities, researchers and policy decision-makers. This represents new transformational empirical insights into how wider knowledge discourses can contribute to more effective adaptive co-management governance practices and solutions for the resilience and sustainability of ecosystems in Northern Canada and other parts of the world with strong indigenous land tenure.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Bayes Theorem , Knowledge , Northwest Territories
6.
Ecol Lett ; 16(12): 1424-35, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24134332

ABSTRACT

Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.


Subject(s)
Conservation of Natural Resources , Decision Support Techniques , Ecology/methods , Models, Theoretical , Decision Making , Endangered Species , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...