Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Crit Care ; 28(1): 306, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285477

ABSTRACT

BACKGROUND: The superimposed pressure is the primary determinant of the pleural pressure gradient. Obesity is associated with elevated end-expiratory esophageal pressure, regardless of lung disease severity, and the superimposed pressure might not be the only determinant of the pleural pressure gradient. The study aims to measure partitioned respiratory mechanics and superimposed pressure in a cohort of patients admitted to the ICU with and without class III obesity (BMI ≥ 40 kg/m2), and to quantify the amount of thoracic adipose tissue and muscle through advanced imaging techniques. METHODS: This is a single-center observational study including ICU-admitted patients with acute respiratory failure who underwent a chest computed tomography scan within three days before/after esophageal manometry. The superimposed pressure was calculated from lung density and height of the largest axial lung slice. Automated deep-learning pipelines segmented lung parenchyma and quantified thoracic adipose tissue and skeletal muscle. RESULTS: N = 18 participants (50% female, age 60 [30-66] years), with 9 having BMI < 30 and 9  ≥ 40 kg/m2. Groups showed no significant differences in age, sex, clinical severity scores, or mortality. Patients with BMI ≥ 40 exhibited higher esophageal pressure (15.8 ± 2.6 vs. 8.3 ± 4.9 cmH2O, p = 0.001), higher pleural pressure gradient (11.1 ± 4.5 vs. 6.3 ± 4.9 cmH2O, p = 0.04), while superimposed pressure did not differ (6.8 ± 1.1 vs. 6.5 ± 1.5 cmH2O, p = 0.59). Subcutaneous and intrathoracic adipose tissue were significantly higher in subjects with BMI ≥ 40 and correlated positively with esophageal pressure and pleural pressure gradient (p < 0.05). Muscle areas did not differ between groups. CONCLUSIONS: In patients with class III obesity, the superimposed pressure does not approximate the pleural pressure gradient, which is higher than in patients with lower BMI. The quantity and distribution of subcutaneous and intrathoracic adiposity also contribute to increased pleural pressure gradients in individuals with BMI ≥ 40. This study introduces a novel physiological concept that provides a solid rationale for tailoring mechanical ventilation in patients with high BMI, where specific guidelines recommendations are lacking.


Subject(s)
Obesity , Humans , Male , Female , Middle Aged , Aged , Adult , Obesity/physiopathology , Obesity/complications , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Tomography, X-Ray Computed/methods , Respiratory Mechanics/physiology , Manometry/methods , Body Mass Index , Pressure
2.
J Cachexia Sarcopenia Muscle ; 15(3): 1187-1198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646842

ABSTRACT

BACKGROUND: Creatinine-based estimated glomerular filtration rate (eGFRCRE) may overestimate kidney function in patients with sarcopenia. While cystatin C-based eGFR (eGFRCYS) is less affected by muscle mass, it may underestimate kidney function in patients with obesity. We sought to evaluate the relationship between body composition defined by computed tomography (CT) scans and discordance between creatinine, eGFRCRE and eGFRCYS in adult patients with cancer. METHODS: This study is a cross-sectional study of consecutive adults with cancer with an abdominal CT scan performed within 90 days of simultaneous eGFRCRE and eGFRCYS measurements between May 2010 and January 2022. Muscle and adipose tissue cross-sectional areas were measured at the level of the third lumbar vertebral body using a validated deep-learning pipeline. CT-defined sarcopenia was defined using independent sex-specific cut-offs for skeletal muscle index (<39 cm2/m2 for women and <55 cm2/m2 for men). High adiposity was defined as the highest sex-specific quartile of the total (visceral plus subcutaneous) adiposity index in the cohort. The primary outcome was eGFR discordance, defined by eGFRCYS > 30% lower than eGFRCRE; the secondary outcome was eGFRCYS > 50% lower than eGFRCRE. The odds of eGFR discordance were estimated using multivariable logistic regression modelling. Unadjusted spline regression was used to evaluate the relationship between skeletal muscle index and the difference between eGFRCYS and eGFRCRE. RESULTS: Of the 545 included patients (mean age 63 ± 14 years, 300 [55%] females, 440 [80.7%] non-Hispanic white), 320 (58.7%) met the criteria for CT-defined sarcopenia, and 136 (25%) had high adiposity. A total of 259 patients (48%) had >30% eGFR discordance, and 122 (22.4%) had >50% eGFR discordance. After adjustment for potential confounders, CT-defined sarcopenia and high adiposity were both associated with >30% eGFR discordance (adjusted odds ratio [aOR] 1.90, 95% confidence interval [CI] 1.12-3.24; aOR 2.01, 95% CI 1.15-3.52, respectively) and >50% eGFR discordance (aOR 2.34, 95% CI 1.21-4.51; aOR 2.23, 95% CI 1.19-4.17, respectively). A spline model demonstrated that as skeletal muscle index decreases, the predicted difference between eGFRCRE and eGFRCYS widens considerably. CONCLUSIONS: CT-defined sarcopenia and high adiposity are both independently associated with large eGFR discordance. Incorporating valuable information from body composition analysis derived from CT scans performed as a part of routine cancer care can impact the interpretation of GFR estimates.


Subject(s)
Adiposity , Creatinine , Cystatin C , Glomerular Filtration Rate , Neoplasms , Sarcopenia , Humans , Cystatin C/blood , Sarcopenia/physiopathology , Male , Female , Neoplasms/complications , Neoplasms/physiopathology , Creatinine/blood , Middle Aged , Aged , Cross-Sectional Studies , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL