Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Markers ; 2018: 5046372, 2018.
Article in English | MEDLINE | ID: mdl-29651324

ABSTRACT

BACKGROUND: After perinatal asphyxia, the cerebellum presents more damage than previously suggested. OBJECTIVES: To explore if the antioxidant N-acetylcysteine amide (NACA) could reduce cerebellar injury after hypoxia-reoxygenation in a neonatal pig model. METHODS: Twenty-four newborn pigs in two intervention groups were exposed to 8% oxygen and hypercapnia, until base excess fell to -20 mmol/l or the mean arterial blood pressure declined to <20 mmHg. After hypoxia, they received either NACA (NACA group, n = 12) or saline (vehicle-treated group, n = 12). One sham-operated group (n = 5) served as a control and was not subjected to hypoxia. Observation time after the end of hypoxia was 9.5 hours. RESULTS: The intranuclear proteolytic activity in Purkinje cells of asphyxiated vehicle-treated pigs was significantly higher than that in sham controls (p = 0.03). Treatment with NACA was associated with a trend to decreased intranuclear proteolytic activity (p = 0.08), There were significantly less mutations in the mtDNA of the NACA group compared with the vehicle-treated group, 2.0 × 10-4 (±2.0 × 10-4) versus 4.8 × 10-5(±3.6 × 10-4, p < 0.05). CONCLUSION: We found a trend to lower proteolytic activity in the core of Purkinje cells and significantly reduced mutation rate of mtDNA in the NACA group, which may indicate a positive effect of NACA after neonatal hypoxia. Measuring the proteolytic activity in the nucleus of Purkinje cells could be used to assess the effect of different neuroprotective substances after perinatal asphyxia.


Subject(s)
Acetylcysteine/analogs & derivatives , Asphyxia Neonatorum/drug therapy , Neuroprotective Agents/administration & dosage , Purkinje Cells/drug effects , Acetylcysteine/administration & dosage , Acetylcysteine/pharmacology , Animals , Asphyxia Neonatorum/genetics , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , Disease Models, Animal , Humans , Infant, Newborn , Mutation Rate , Neuroprotective Agents/pharmacology , Proteolysis , Purkinje Cells/cytology , Purkinje Cells/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...