Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 27(9): 274, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36224024

ABSTRACT

BACKGROUND: Candida albicans is responsible for a wide range of medical ailments, from harmless cutaneous to life-threatening bloodstream infections. Growing cases of antifungal-drug resistance strains of C. albicans become a rationale to explore and develop novel anti-candida agents. In this paper, we assessed the anti-candida activity of the methanolic extracts of various tropical medicinal plants from Myrtaceae, Poaceae, and Zingiberaceae, commonly used in Indonesia to treat fungal infections. METHODS: Candida albicans strain ATCC 10231 was used as a subject to assess the anti-Candida activities of plant methanolic extracts through disc diffusion assay. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were observed. RESULTS: All plant extracts in this study showed antifungal activities against C. albicans. Among them, Cymbopogon citratus, Curcuma xanthorrhiza, Curcuma aeruginosa, and Zingiber officinale var. rubrum showed the lowest MIC and MFC value of 3.8 mg/mL. CONCLUSIONS: The growth inhibition of C. albicans on disc diffusion assay was demonstrated by Z. officinale var. rubrum and C. longa, which were comparable to antifungal nystatin. Further investigation of the chemical constituents of the extracts and the cytotoxicity test is needed to further develop plant-derived anti-candida agents.


Subject(s)
Candida albicans , Plants, Medicinal , Antifungal Agents/pharmacology , Candida , Indonesia , Microbial Sensitivity Tests , Nystatin , Plant Extracts/pharmacology
2.
RSC Adv ; 12(31): 20319-20329, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35919602

ABSTRACT

The human estrogenic enzyme 17beta-hydroxysteroid dehydrogenase type-1 (HSD17B1) provides biosynthesis regulation of active estrogen in stimulating the development of breast cancer through cell proliferation. The ß-sitosterol is classified as a steroid compound and is actually a type of triterpenoid compound that has a similar structure to a steroid. This similarity provides a great opportunity for the inhibitor candidate to bind to the HDS17B1 enzyme because of the template similarity on the active site. Several in silico approaches have been applied in this study to examine the potential of these two inhibitor candidates. Pharmacokinetic studies showed positive results by meeting several drug candidate criteria, such as drug-likeness, bioavailability, and ADMET properties. A combination of molecular docking and MD simulation showed good conformational interaction of the inhibitors and HSD17B1. Prediction of binding free energy (ΔG bind) using the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) approach shows ΔG bind (kcal mol-1) of C1-HSD17B1: -49.31 ± 0.23 and C2-HSD17B1: -33.54 ± 0.34. Meanwhile, decomposition energy analysis (ΔG residue bind) suggested several key residues that were also responsible for the interaction with inhibitors, such as C1-HSD17B1 (six residues: Leu96, Leu149, Pro187, Met193, Val225, and Phe226) and C2-HSD17B1 (four residues: Ile14, Gly94, Pro187, and Val188). Hopefully, the obtained results from this research could be considered for the mechanistic inhibition of the HSDS17B1 enzyme at molecular and atomistic levels.

3.
Biology (Basel) ; 11(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35625422

ABSTRACT

Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant-microbe interaction, especially regarding their role in halophyte adaptation to coastal ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition. Strong correlations were observed between root bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative effect on bacterial diversity. A strong correlation was also found between the abundance of several bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the findings of this work provided valuable information regarding bacterial communities associated with the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also identified several bacterial species that might be involved in tolerance against stresses. Further work will be focused on isolation and transplantation of these potential microbes, to validate their role in plant tolerance against stresses, not only in their native hosts but also in crops.

4.
J Genet Eng Biotechnol ; 16(2): 639-643, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30733783

ABSTRACT

Gynura procumbens (Lour.) Merris one of medicinal plant which was carried out used as antioxidant, anticancer, anti-inflammatory, hepatoprotective, and antimicrobial. Many strategies were used to increase the production of biomass and valuable compounds. This study was to investigate the variation effect of growth regulators and immersion frequency on production of biomass and flavonoid contained of G. procumbens shoots culture in temporary immersion bioreactor. Stem nodes were used as an explants and induction of shoots were done in solid MS medium supplemented with many kinds of growth regulator. The best treatments were used to produce biomass and flavonoid compounds in temporary immersion bioreactor; there are combination of IAA 2 mg/L and BA 4, 6, 8 mg/L and immersion frequency (5 min each 3 h; 15 min each 12 h). Results showed that the growths of G. procumbens shoots in solid MS medium were influenced by supplementation of growth regulators. MS medium supplemented with single cytokinine (6 mg/L kinetin) and combination of auxin (IAA) and cytokinine (BA) caused increasing of shoots growth. Production of biomass of G. procumbens in temporary immersion bioreactor was achieved in long immersion interval (12 h) and highest flavonoid production was obtained in combination treatment of immersion frequency 15 min each 12 h and MS medium supplemented with IAA 2 mg/L, BA 8 mg/L.

5.
J Genet Eng Biotechnol ; 16(2): 703-709, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30733791

ABSTRACT

A protocol for genetic transformation mediated by Agrobacterium tumefaciens and production of transgenic Dendrobium lasianthera has been developed for the first time. The 8-week-old protocorm explants were used as target of transformation with Agrobacterium tumefaciens strain LBA4404 carrying plasmid pG35SKNAT1. Several parameters such as infection period, Agrobacterium density, concentration of acetosyringone, and co-cultivation period were evaluated for the transformation efficiency. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's Multiple Range Test (DMRT) with p < 0.05. Subsequently, KNAT1 gene expression was confirmed by polymerase chain reaction (PCR) analysis. The highest efficiency of transformation (70%) obtained from protocorm explants infected with Agrobacterium culture was at the OD600 concentration of 0.6 for 30 min, and co-cultivated with acetosyringone 100 µM for 5 days. The results of confirmation by PCR analysis show that the KNAT1 gene has been integrated and expressed in the genome of Dendrobium lasianthera transgenic.

SELECTION OF CITATIONS
SEARCH DETAIL
...