Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 258(Pt 1): 128851, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114005

ABSTRACT

Over the past few years, several advancements have been made to develop artificial skin that mimics human skin. Artificial skin manufactured using 3D printing technology that includes all epidermal and dermal components, such as collagen, may offer a viable solution. The skin-specific bioink was derived from digested chicken skin and incorporated into PVA (polyvinyl alcohol) and gelatin. The prepared bioink was further analyzed for its structure, stability, biocompatibility, and wound healing potential in in vitro, in ovo, and in vivo models. The 3D-printed skin showed excellent mechanical properties. In vitro scratch assays showed the proliferation and migration of cells within 24 h. In an in ovo assay, the 3D-printed skin facilitated the attachment of cells to the scaffolds. In the animal study, the quick cellular recruitment at the injury site accelerated wound healing. Further, hydroxyproline content was estimated to be 0.9-1.2 mg/ml, and collagen content was 7.5 %, which confirmed the epithelization. The relative expressions of MMP-9, COMP, TNF-α, and IL-6 genes were found to be increased compared to the control. These results demonstrate that 3D bioprinting represents a suitable technology to generate bioengineered skin for therapeutic and industrial applications in an automated manner.


Subject(s)
Bioprinting , Tissue Scaffolds , Animals , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Bioprinting/methods , Collagen/chemistry , Extracellular Matrix , Printing, Three-Dimensional
2.
Polymers (Basel) ; 15(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37447594

ABSTRACT

Zinc ions can hinder the synthesis of proteins required for accomplishing several stages of the viral life cycle. The intracellular zinc concentration can be increased by using zinc ionophores which transport zinc ions into the cells and hinder viral replication. (Hydroxy)chloroquine is an example of a zinc ionophore, but both zinc and (hydroxy)chloroquine can be toxic to the host organism. The nanocarriers may serve as camouflage to evade the adverse effects of drugs, chemicals, and nanoparticles on the host. We formulated ZnO nanoparticles with flower-like morphology (ZnONFs). It was further decorated with chitosan along with hydroxychloroquine (as a zinc ionophore) (CHCZnO NPs). We have chosen the cationic polymer chitosan since it is biocompatible, biodegradable and binds easily with the cells, and enhances the transport of drugs across cell membranes. The formulation was investigated for size, shape, surface charge, and interaction of chemicals used. We evaluated the formulations for cytotoxicity, and biocompatibility in embryonated chicks and their efficacy against bovine coronavirus (BCoV) isolated from a buffalo calf, and pneumo-enteric coronaviruses isolated from a buffalo calf with promising results in comparison to ZnONFs/hydroxychloroquine alone. Furthermore, we elucidate the mechanism underlying the lysosomotropic effect of various formulations on Vero cells infected with the buffalo coronavirus.

3.
J Xenobiot ; 13(2): 270-283, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37367496

ABSTRACT

Chemical fungicides are the backbone of modern agriculture, but an alternative formulation is necessary for sustainable crop production to address human health issues and soil/water environmental pollution. So, a green chemistry approach was used to form guar gum nanoemulsions (NEs) of 186.5-394.1 nm containing the chemical fungicide mancozeb and was characterized using various physio-chemical techniques. An 84.5% inhibition was shown by 1.5 mg/mL mancozeb-loaded NEs (GG-1.5) against A. alternata, comparable to commercial mancozeb (86.5 ± 0.7%). The highest mycelial inhibition was exhibited against S. lycopersici and S. sclerotiorum. In tomatoes and potatoes, NEs showed superior antifungal efficacy in pot conditions besides plant growth parameters (germination percentage, root/shoot ratio and dry biomass). About 98% of the commercial mancozeb was released in just two h, while only about 43% of mancozeb was released from nanoemulsions (0.5, 1.0 and 1.5) for the same time. The most significant results for cell viability were seen at 1.0 mg/mL concentration of treatment, where wide gaps in cell viability were observed for commercial mancozeb (21.67%) and NEs treatments (63.83-71.88%). Thus, this study may help to combat the soil and water pollution menace of harmful chemical pesticides besides protecting vegetable crops.

4.
J Xenobiot ; 13(1): 148-158, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36976161

ABSTRACT

Isometamidium chloride (ISM) is a trypanocide for the prophylactic and therapeutic use against vector-borne animal trypanosomosis (mainly Surra caused by Trypanosoma evansi) and African animal trypanosomosis caused by T. congolense/T. vivax/T. brucei). ISM was found to be an efficient trypanocide for therapeutic/prophylactic use against trypanosomosis; however, it produces some local and systemic detrimental effects in animals. We synthesized isometamidium chloride-loaded alginate gum acacia nanoformulation (ISM SANPS) to lessen the detrimental side effects of isometamidium chloride (ISM) while treating trypanosomal diseases. We intended to determine the cytocompatibility/toxicity, and DNA deterioration/chromosomal structural or number changes (genotoxicity) of ISM SANPs using mammalian cells in a concentration-dependent manner. Apurinic/apyrimidinic (AP) sites are one of the major types of DNA lesions formed during base excision and repair of oxidized, deaminated, or alkylated bases. The intensity of the cellular AP site is an excellent marker of the deterioration of DNA quality. We thought it pertinent to quantify the AP sites in ISM SANPs-treated cells. Our investigations established a dose-dependent cyto-compatibility or toxicity and DNA impairment (genotoxicity) in ISM SANPs-treated horse peripheral blood mononuclear cells. ISM SANPs were biocompatible at various concentrations tested on the mammalian cells.

5.
Microb Pathog ; 178: 106070, 2023 May.
Article in English | MEDLINE | ID: mdl-36924902

ABSTRACT

Strangles, caused by Streptococcus equi subspecies equi, is a highly infectious respiratory disease affecting horses and other equines. The disease is economically important and compromises the productivity of equine farm significantly. The disease is characterized by pyrexia, mucopurulent nasal discharge, and abscess formation in the lymph nodes of the head and neck of horses. The disease transmission occurs either directly by coming in contact with infectious exudates or indirectly via fomite transmission. Besides this, carrier animals are the primary and most problematic source of disease infection. The organism not only initiates outbreaks but also makes the control and prevention of the disease difficult. The diagnosis of strangles is best done by isolating and characterizing the bacteria from nasal discharge, pus from abscesses, and lymphoid tissues or by using PCR. ELISA can also be used to detect serum protein M (SeM) antibodies for diagnosis. The most popular treatment for strangles is with penicillin; however, the treatment is affected by the stage, feature and severity of the disease. Prevention and control of strangles can be achieved through vaccination and good hygiene practices. Basically, this review describes the global prevalence of S. equi, as well as general aspects of the disease, like pathogenesis, diagnosis, treatment, prevention, control and management of the disease.


Subject(s)
Horse Diseases , Lymphadenitis , Streptococcal Infections , Streptococcus equi , Horses , Animals , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Horse Diseases/microbiology , Streptococcal Infections/diagnosis , Streptococcal Infections/epidemiology , Streptococcal Infections/veterinary , Streptococcus equi/genetics , Polymerase Chain Reaction , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary
6.
Arab J Chem ; 16(2): 104468, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36466721

ABSTRACT

The global pandemic of COVID-19 had a consequential impact on our lives. (Hydroxy)chloroquine, a well-known drug for treatment or prevention against malaria and chronic inflammatory conditions, was also used for COVID patients with reported potential efficacy. Although it was well tolerated, however in some cases, it produced severe side effects, including grave cardiac issues. The variable reports on the administration of (hydroxy)chloroquine in COVID19 patients led to chaos. This drug is a well-known zinc ionophore, besides possessing antiviral effects. Zinc ionophores augment the intracellular Zn2+ concentration by facilitating the zinc ions into the cells and subsequently impair virus replication. Zinc oxide nanoparticles (ZnO NPs) have been reported to possess antiviral activity. However, the adverse effects of both components are also reported. We discussed in depth their possible mechanism as antiviral and smart delivery perspectives through pH-sensitive polymers/ micelles and ZnO NPs.

7.
J Xenobiot ; 12(2): 74-90, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35466214

ABSTRACT

Biopolymers such as chitosan and gum acacia are used for nanotechnological applications due to their biosafety and ecofriendly nature. The commercial fungicide mancozeb (M) was loaded into chitosan-gum acacia (CSGA) polymers to form nanocomposite (NC) CSGA-M (mancozeb-loaded) measuring 363.6 nm via the ionic gelation and polyelectrolyte complexation method. The physico-chemical study of nano CSGA-M was accomplished using dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Nano CSGA-M-1.0 (containing 1.0 mg/mL mancozeb) at 1.5 ppm demonstrated a maximum inhibition (83.8 ± 0.7%) against Alternaria solani, while Sclerotinia sclerotiorum exhibited a 100% inhibition at 1.0 and 1.5 ppm through the mycelium inhibition method. Commercial mancozeb showed an inhibition of 84.6 ± 0% and 100%, respectively, for both fungi. In pot house conditions, NCs were found to exhibit good antimicrobial activity. Disease control efficiency (DCE, in %) in pathogen-treated plants for CSGA-M-1.0 was 64.6 ± 5.0 and 60.2 ± 1.4% against early blight and stem rot diseases, respectively. NCs showed lower cytotoxicity than commercial mancozeb at the given concentration. In conclusion, both in vitro and in vivo antifungal efficacy for nano CSGA-M was found to be quite comparable but less toxic than mancozeb to Vero cell lines; thus, in the future, this formulation may be used for sustainable agriculture.

8.
Toxicol Rep ; 8: 1970-1978, 2021.
Article in English | MEDLINE | ID: mdl-34934635

ABSTRACT

Metal/metal oxide nanoparticles show promise for various applications, including diagnosis, treatment, theranostics, sensors, cosmetics, etc. Their altered chemical, optical, magnetic, and structural properties have differential toxicity profiles. Depending upon their physical state, these NPs can also change their properties due to alteration in pH, interaction with proteins, lipids, blood cells, and genetic material. Metallic nanomaterials (comprised of a single metal element) tend to be relatively stable and do not readily undergo dissolution. Contrarily, metal oxide and metal alloy-based nanomaterials tend to exhibit a lower degree of stability and are more susceptible to dissolution and ion release when introduced to a biological milieu, leading to reactive oxygen species production and oxidative stress to cells. Since NPs have considerable mobility in various biological tissues, the investigation related to their adverse effects is a critical issue and required to be appropriately addressed before their biomedical applications. Short and long-term toxicity assessment of metal/metal oxide nanoparticles or their nano-formulations is of paramount importance to ensure the global biome's safety; otherwise, to face a fiasco. This article provides a comprehensive introspection regarding the effects of metal/metal oxides' physical state, their surface properties, the possible mechanism of actions along with the potential future strategy for remediation of their toxic effects.

9.
Med Chem ; 17(6): 576-586, 2021.
Article in English | MEDLINE | ID: mdl-32081108

ABSTRACT

BACKGROUND: Lawsonia inermis Linn popularly known as Henna, plays an important role in ayurvedic or natural herbal medicines. The presence of phytoconstituents in henna, that may affect the animal or human health adversely, needs to be elucidated for L. inermis Linn species grown in India. INTRODUCTION: The aim of this research was to perform phytochemical screening, and study cytotoxicity and anti-inflammatory activities to understand the potential of leaves of Lawsonia inermis of Indian origin to provide a way forward for therapeutic use in medicine. METHODS: We assessed the phytochemical profile for the presence of phytoconstituents (alkaloids, carbohydrates, glycosides, steroids, flavonoids, saponins, tannins, proteins/amino acids and gums/mucilage) in various extracts of the plant leaves. The extracts were further purified by column chromatography for the isolation of plant constituents and monitored by TLC, analyzed by Fourier transform infrared FT-IR spectroscopy, H1NMR, and GC-MS analysis. Fractions were assessed for cytotoxicity and anti-inflammatory properties at various concentrations. We assessed the anti-inflammatory activity by nitric oxide production in various leaf extracts determined by Griess assay. RESULTS: All the spectral results suggest that the compounds from the extract contain an aromatic nucleus and OH group along with the methoxy group, allyl as well as vinyl group. Fractions of chloroform/methanolic (7:3) leaf extract of Lawsonia inermis confirmed the presence of the two constituents i.e. fraxetin and 1(3H)-isobenzofuranone. We observed a significant difference in cytotoxicity at higher concentrations in methanol and chloroform: methanol (8:2) leaf extracts (p>0.05), we could not find any significant differences amongst other leaf extracts at different concentrations. Some leaf extracts have potential cytotoxic activity on Vero cells. Reducing the chloroform concentration during extraction decreases the cytotoxic effect on cells. Nitric oxide levels decreased from 1000 µg/ml concentration to lower concentrations with varying degrees. Overall the highest nitric oxide production by CHCl3 (70%)/ MeOH (30%) was observed amongst various fractions at different concentrations. CONCLUSION: Phytochemical screening and the study of cytotoxicity and anti-inflammatory activities highlight the potential of leaves of the plant to provide a way further for their use in medicine. Fraxetin 1(3H) and isobenzofuranone structures were confirmed in fractions of CHCl3 (70%)/ MeOH (30%) extract as potent constituents. Some leaf extracts have potential cytotoxic activity on Vero cells. Reducing the chloroform concentration during extraction, it decreases the cytotoxic effect on cells. The cytotoxicity studies indicate the presence of cytotoxic compounds in some of these extracts, warranting research for the fabrication of suitable formulations comprising these constituents to reduce dose/toxicity for beneficial effects of the plant components.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/toxicity , Myrtales/chemistry , Phytochemicals/pharmacology , Plant Leaves/chemistry , Animals , Chlorocebus aethiops , Phytochemicals/chemistry , Plants, Medicinal , Vero Cells
10.
Int J Biol Macromol ; 165(Pt A): 71-81, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32987081

ABSTRACT

We aimed to provide a tissue repair material, which can be synthesized rapidly, using polymers mimicking the natural environment in the extra-cellular matrix and metals/minerals. The components should have the potential to be used in tissue repair and simultaneously, reducing the side-effects of the incorporated molecules. It is challenging to manage the dispersibility of ZnO NPs in common solutions like water. Here, we report a novel method for preparing highly dispersible suspensions of ZnO NPs. In contrast to those synthesized by conventional methods, microwave assisted method allowed synthesis of dispersible ZnO NPs and the incorporation of zinc/Iron oxides NPs within alginate and gum matrix (AG) in a short span of time providing high yield of the product. The nanoformulations were characterized for size, morphology, interaction of various chemicals used during their synthesis by transmissible electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and energy dispersive X ray Spectrum. It was also evaluated for cytotoxicity and their effect on equine fibroblast cells. Microwave-assisted fabrication of zinc/iron oxides nanoparticles provided flowerlike morphology with good dispersibility and high yield in a short span of time. Our results revealed that ZnO NPs were more cytotoxic than AG ZnO NPs and doped AG Fe3O4 doped ZnO NPs at higher concentrations. Further metal nanoparticles capped with alginate/acacia with size range less than 100 nm demonstrated high stability, good biocompatibility, re-epithelization and enhanced mineralization in horse fibroblast cells.


Subject(s)
Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Zinc Oxide/chemistry , Animals , Ferric Compounds/pharmacology , Ferric Compounds/radiation effects , Fibroblasts/drug effects , Horses , Metal Nanoparticles/radiation effects , Microscopy, Electron, Scanning , Microwaves , Nanocomposites/radiation effects , Spectroscopy, Fourier Transform Infrared , Zinc Oxide/pharmacology , Zinc Oxide/radiation effects
13.
Int J Biol Macromol ; 155: 823-833, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32234436

ABSTRACT

A perfect wound covering should prevent dryness of the wound and provide a favourable moist milieu at the wound interface allowing gas access but act as a barrier to the dirt and microorganisms. It is imperative to ensure early restoration of wound without scar formation at the site. Topical application of antiseptic preparation is the best for wound treatment because of its direct action. Zinc oxide nanoparticles (ZnO NPs) possess antimicrobial activity and enhance wound healing. Biocompatible polymers for inclusion of ZnO NPs can enhance the efficacy at lower doses while reducing the unwanted toxic effects. We synthesized ZnO NPs nanocomposites by impregnating the NPs in covalently attached gum acacia to the alginate exploiting the hydroxyl groups with aldehydes of glutaraldehyde, providing hydrated environment during wound application. Its topical application accelerated the full-thickness excision wound healing in rabbits. The polymers exerted synergistic effects due to their wound-healing potential. The wound-healing process was also investigated by transmission electron microscopy of regenerated tissues, collagen contents, alizared staining and histological observations to elucidate the healing mechanism compared to a commercially available ointment and negative controls. It has promising properties of biocompatibility, anti-inflammatory, cell adhesion and proliferation without any scar formation which are crucial for healing.


Subject(s)
Alginates/chemistry , Biocompatible Materials , Gum Arabic/chemistry , Hydrogels , Wound Healing/drug effects , Zinc Oxide/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/therapeutic use , Hydrogels/therapeutic use , Nanocomposites/therapeutic use , Rabbits , Skin/drug effects
15.
Mol Immunol ; 105: 276-282, 2019 01.
Article in English | MEDLINE | ID: mdl-30503611

ABSTRACT

Significant structural differences in the extracellular domain of toll-like receptor 9 (TLR9) account for species-specific recognition of its ligand CpG-ODN sequences. TLR9 is extensively studied in human, mice and some domestic animals. The recognition ability appears to be utilized differently by various species and breeds, but so far no comprehensive study exists about the equine TLR9 gene. We characterized TLR9 sequences of Marwari and Zanskari breeds of horses and Poitu donkey. We sequenced and identified the protein coding regions of equine TLR9 and compared with other animals and human beings. Furthermore, we also analyzed the amino acid substitutions and their likely implications on functions. The analysis revealed 14% evolutionary divergence between equine and human TLR9, while it was 1% between the Equus caballus and Equus asinus and less than 1% within Equus caballus. In phylogenetic analysis of predicted amino acids, the indigenous equines grouped with thoroughbred Equus caballus, while human, cattle, dog, sheep, mice, and buffalo formed separate clades. Furthermore, we also analyzed the amino acid substitutions and their likely implications on functions by sorting intolerant from tolerant (SIFT) analysis and predicted two substitutions of amino acids (D80N and S822P) in Marwari horses in leucine rich repeat 1 (LRR1) without any functional effects. The substitutions (V214A and Y579C) in LRR 3 and LRR11 in Zanskari horses were predicted to have functional consequences. Out of overall 8 substitutions, three substitutions (I420V, S970R and R1001C) were found in Equus asinus in LRR7, LRR 13, and toll interleukin receptor (TIR) domains, while the substitution G649S is observed in Poitu donkey only. We report for the first time that despite the conserved residues, the striking effect of substitutions, found within the TLR9 genes of different equine breeds/species may have possible implications.


Subject(s)
Amino Acid Sequence , Equidae/genetics , Horses/genetics , Phylogeny , Sequence Analysis, Protein , Toll-Like Receptor 9/genetics , Animals , Equidae/immunology , Horses/growth & development , Humans , Protein Domains , Species Specificity , Toll-Like Receptor 9/immunology
16.
Open Virol J ; 12: 80-98, 2018.
Article in English | MEDLINE | ID: mdl-30288197

ABSTRACT

INTRODUCTION: Zoonotic diseases are the infectious diseases that can be transmitted to human beings and vice versa from animals either directly or indirectly. These diseases can be caused by a range of organisms including bacteria, parasites, viruses and fungi. Viral diseases are highly infectious and capable of causing pandemics as evidenced by outbreaks of diseases like Ebola, Middle East Respiratory Syndrome, West Nile, SARS-Corona, Nipah, Hendra, Avian influenza and Swine influenza. EXPALANTION: Many viruses affecting equines are also important human pathogens. Diseases like Eastern equine encephalitis (EEE), Western equine encephalitis (WEE), and Venezuelan-equine encephalitis (VEE) are highly infectious and can be disseminated as aerosols. A large number of horses and human cases of VEE with fatal encephalitis have continuously occurred in Venezuela and Colombia. Vesicular stomatitis (VS) is prevalent in horses in North America and has zoonotic potential causing encephalitis in children. Hendra virus (HeV) causes respiratory and neurological disease and death in man and horses. Since its first outbreak in 1994, 53 disease incidents have been reported in Australia. West Nile fever has spread to many newer territories across continents during recent years.It has been described in Africa, Europe, South Asia, Oceania and North America. Japanese encephalitis has expanded horizons from Asia to western Pacific region including the eastern Indonesian archipelago, Papua New Guinea and Australia. Rabies is rare in horses but still a public health concern being a fatal disease. Equine influenza is historically not known to affect humans but many scientists have mixed opinions. Equine viral diseases of zoonotic importance and their impact on animal and human health have been elaborated in this article. CONCLUSION: Equine viral diseases though restricted to certain geographical areas have huge impact on equine and human health. Diseases like West Nile fever, Hendra, VS, VEE, EEE, JE, Rabies have the potential for spread and ability to cause disease in human. Equine influenza is historically not known to affect humans but some experimental and observational evidence show that H3N8 influenza virus has infected man. Despite our pursuit of understanding the complexity of the vector-host-pathogen mediating disease transmission, it is not possible to make generalized predictions concerning the degree of impact of disease emergence. A targeted, multidisciplinary effort is required to understand the risk factors for zoonosis and apply the interventions necessary to control it.

17.
Article in English | MEDLINE | ID: mdl-30104283

ABSTRACT

Quinapyramine sulfate (QS) produces trypanocidal effects against the parasite Trypanosoma evansi but is often poorly tolerated and causes serious reactions in animals. The encapsulation of QS in chitosan-mannitol to provide sustained release would improve both the therapeutic effect of QS and the quality of life of animals treated with this formulation. QS was encapsulated into a nanoformulation prepared from chitosan, tripolyphosphate, and mannitol nanomatrix (ChQS-NPs). ChQS-NPs were well ordered in shape, with nanoparticle size, as determined by transmission electron microscopy and atomic force microscopy. Our research revealed dose-dependent effects on biosafety and DNA damage in mammalian cells treated with ChQS-NPs. ChQS-NPs were absolutely risk-free at effective as well as many times higher doses against T. evansi ChQS-NPs were effective in rabbits, as they killed the parasites, relieving the animals from the clinical symptoms of the disease. The extent of this protection was similar to that observed with the conventional drug at higher dosages (5 mg QS/kg of body weight). ChQS-NPs are safe, nontoxic, and more effective than QS and offer a promising alternative to drug delivery against surra in animal models. ChQS-NPs may be useful for the treatment of surra due to reduced dosages and frequency of administration.


Subject(s)
Biocompatible Materials/administration & dosage , Chitosan/administration & dosage , Mannitol/administration & dosage , Nanoparticles/administration & dosage , Quinolinium Compounds/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Carriers/administration & dosage , Drug Delivery Systems/methods , HeLa Cells , Humans , Microscopy, Atomic Force/methods , Microscopy, Electron, Transmission/methods , Particle Size , Quality of Life , Rabbits , Trypanosoma/drug effects
19.
Int J Biol Macromol ; 101: 967-972, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28373047

ABSTRACT

Zinc oxide nanoparticles are important nanomaterials currently under research due to their applicability in nanomedicine. Toxicity of ZnO NPs has been extensively studied and has been shown to affect various cell types and animal systems. In this study, we investigated hemolytic potential and oxidative stress inflicted by ZnO NPs and ZnO NPs-loaded-sodium alginate-gum acacia hydrogels on horse erythrocytes and African green monkey kidney (Vero) cells. Our study provides a better understanding of the hemolytic and oxidative effects of interaction of ZnO NPs and ZnO NPs released from polymeric hydrogels with the biological system. Remarkable aggregation of erythrocytes was noted in the higher concentration of ZnO NPs treated erythrocytes as compared to erythrocytes treated with ZnO NPs-loaded hydrogels. ZnO NPs-loaded hydrogels treated Vero cells significantly reduced oxidative stress as evidenced by less malondialdehyde production as compared to that of ZnO NPs treated cells. Normal horse erythrocytes when treated with ZnO NPs in in vitro condition undergo oxidative damage, and contribute in augmenting the toxicity. We demonstrated that polymeric ZnO NPs reduced the undesirable effects provoked by ZnO NPs on mammalian cells.


Subject(s)
Alginates/chemistry , Gum Arabic/chemistry , Hemolysis/drug effects , Hydrogels/chemistry , Oxidative Stress/drug effects , Zinc Oxide/chemistry , Zinc Oxide/toxicity , Animals , Erythrocytes/drug effects , Erythrocytes/immunology , Erythrocytes/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Horses , Nanoparticles/chemistry , Nanoparticles/toxicity , Structure-Activity Relationship
20.
Int J Biol Macromol ; 96: 185-191, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27939272

ABSTRACT

An ideal biomaterial for wound dressing applications should possess antibacterial and anti-inflammatory properties without any toxicity to the host cells while providing the maximum healing activity. Zinc oxide nanoparticles (ZnONPs) possess antimicrobial activity and enhance wound healing, but the questions regarding their safety arise before application to the biological systems. We synthesized ZnONPs-loaded-sodium alginate-gum acacia hydrogels (SAGA-ZnONPs) by cross linking hydroxyl groups of the polymers sodium alginate and gum acacia with the aldehyde group of gluteradehyde. Here, we report the wound healing properties of sodium alginate/gum acacia/ZnONPs, circumventing the toxicity of ZnONPs simultaneously. We demonstrated the concentration-dependent zones of inhibition in treated cultures of Pseudomonas aerigunosa and Bacillus cereus and biocompatability on peripheral blood mononuclear/fibroblast cells. SAGA-ZnONPs hydrogels showed a healing effect at a low concentration of ZnONPs using sheep fibroblast cells. Our findings suggest that high concentrations of ZnONPs were toxic to cells but SAGA-ZnONPs hydrogels significantly reduced the toxicity and preserved the beneficial antibacterial and healing effect.


Subject(s)
Alginates/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Gum Arabic/chemistry , Hydrogels/pharmacology , Nanoparticles/chemistry , Zinc Oxide/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Proliferation/drug effects , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemistry , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Pseudomonas aeruginosa/genetics , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...