Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biomacromolecules ; 24(9): 3972-3984, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37574715

ABSTRACT

Hydrogels as scaffolds in tissue engineering have gained increasing attention in recent years. Natural hydrogels, e.g., collagen or fibrin, are limited by their weak mechanical properties and fast degradation, whereas synthetic hydrogels face issues with biocompatibility and biodegradation. Therefore, combining natural and synthetic polymers to design hydrogels with tunable mechanical stability and cell affinity for biomedical applications is of interest. By using fibrin with its excellent cell compatibility and dextran with controllable mechanical properties, a novel bio-based hydrogel can be formed. Here, we synthesized fibrin and dextran-methacrylate (MA)-based hydrogels with tailorable mechanical properties, controllable degradation, variable pore sizes, and ability to support cell proliferation. The hydrogels are formed through in situ gelation of fibrinogen and dextran-MA with thrombin and dithiothreitol. Swelling and nuclear magnetic resonance diffusometry measurements showed that the water uptake and mesh sizes of fabricated hydrogels decrease with increasing dextran-MA concentrations. Cell viability tests confirm that these hydrogels exhibit no cytotoxic effect.


Subject(s)
Fibrin , Hydrogels , Hydrogels/pharmacology , Dextrans , Porosity , Tissue Engineering , Tissue Scaffolds
3.
Adv Healthc Mater ; 11(24): e2200989, 2022 12.
Article in English | MEDLINE | ID: mdl-36100464

ABSTRACT

Growing millimeter-scaled functional tissue remains a major challenge in the field of tissue engineering. Therefore, microporous annealed particles (MAPs) are emerging as promising porous biomaterials that are formed by assembly of microgel building blocks. To further vary the pore size and increase overall MAP porosity of mechanically stable scaffolds, rod-shaped microgels with high aspect ratios up to 20 are chemically interlinked into highly porous scaffolds. Polyethylene glycol based microgels (width 10 µm, lengths up to 200 µm) are produced via in-mold polymerization and covalently interlinked into stable 3D scaffolds via epoxy-amine chemistry. For the first time, MAP porosities can be enhanced by increasing the microgel aspect ratio (mean pore sizes ranging from 39 to 82 µm, porosities from 65 to 90%). These porosities are significantly higher compared to constructs made from spherical or lower aspect ratio rod-shaped microgels. Rapid filling of the pores by either murine or primary human fibroblasts is ensured as cells migrate and grow extensively into these scaffolds. Overall, this study demonstrates that highly porous, stable macroporous hydrogels can be achieved with a very low partial volume of synthetic, high aspect ratio microgels, leading to large empty volumes available for cell ingrowth and cell-cell interactions.


Subject(s)
Microgels , Humans , Animals , Mice , Porosity , Tissue Engineering/methods , Biocompatible Materials , Hydrogels , Cell Movement , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...