Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(30): e2301856120, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37459518

ABSTRACT

Benjamin Franklin was a preeminent proponent of the new colonial and Continental paper monetary system in 18th-century America. He established a network of printers, designing and printing money notes at the same time. Franklin recognized the necessity of paper money in breaking American dependence on the British trading system, and he helped print Continental money to finance the American War of Independence. We use a unique combination of nondistractive, microdestructive, and advanced atomic-level imaging methods, including Raman, Infrared, electron energy loss spectroscopy, X-ray diffraction, X-ray fluorescence, and aberration-corrected scanning transmission electron microscopy, to analyze pre-Federal American paper money from the Rare Books and Special Collections of the Hesburgh Library at the University of Notre Dame. We investigate and compare the chemical compositions of the paper fibers, the inks, and fillers made of special crystals in the bills printed by Franklin's printing network, other colonial printers, and counterfeit money. Our results reveal previously unknown ways that Franklin developed to safeguard printed money notes against counterfeiting. Franklin used natural graphite pigments to print money and developed durable "money paper" with colored fibers and translucent muscovite fillers, along with his own unique designs of "nature-printed" patterns and paper watermarks. These features and inventions made pre-Federal American paper currency an archetype for developing paper money for centuries to come. Our multiscale analysis also provides essential information for the preservation of historical paper money.

2.
Inorg Chem ; 60(24): 18938-18949, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34889599

ABSTRACT

Uranium dioxide (UO2), the primary fuel for commercial nuclear reactors, incorporates excess oxygen forming a series of hyperstoichiometric oxides. Thin layers of these oxides, such as UO2.12, form readily on the fuel surface and influence its properties, performance, and potentially geologic disposal. This work reports a rapid and straightforward combustion process in uranyl nitrate-glycine-water solutions to prepare UO2.12 nanomaterials and thin films. We also report on the investigation of the structural changes induced in the material by irradiation. Despite the simple processing aspects, the combustion synthesis of UO2.12 has a sophisticated chemical mechanism involving several exothermic steps. Raman spectroscopy and single-crystal X-ray diffraction (XRD) measurements reveal the formation of a complex compound containing the uranyl moiety, glycine, H2O, and NO3- groups in reactive solutions and dried combustion precursors. Combustion diagnostic methods, gas-phase mass spectroscopy, differential scanning calorimetry (DSC), and extracted activation energies from DSC measurements show that the rate-limiting step of the process is the reaction of ammonia with nitrogen oxides formed from the decomposition of glycine and uranyl nitrate, respectively. However, the exothermic decomposition of the complex compound determines the maximum temperature of the process. In situ transmission electron microscopy (TEM) imaging and electron diffraction measurements show that the decomposition of the complex compound directly produces UO2. The incorporation of oxygen at the cooling stage of the combustion process is responsible for the formation of UO2.12. Spin coating of the solutions and brief annealing at 670 K allow the deposition of uniform films of UO2.12 with thicknesses up to 300 nm on an aluminum substrate. Irradiation of films with Ar2+ ions (1.7 MeV energy, a fluence of up to 1 × 1017 ions/cm2) shows unusual defect-simulated grain growth and enhanced chemical mixing of UO2.12 with the substrate due to the high uranium ion diffusion in films. The method described in this work allows the preparation of actinide oxide targets for fundamental nuclear science research and studies associated with stockpile stewardship.

3.
ACS Appl Mater Interfaces ; 13(29): 35153-35164, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34270887

ABSTRACT

Combustion synthesis in uranyl nitrate-acetylacetone-2-methoxyethanol solutions was used to deposit thin UO2 films on aluminum substrates to investigate the irradiation-induced restructuring processes. Thermal analysis revealed that the combustion reactions in these solutions are initiated at ∼160 °C. The heat released during the process and the subsequent brief annealing at 400 °C allow the deposition of polycrystalline films with 5-10 nm UO2 grains. The use of multiple deposition cycles enables tuning of the film thicknesses in the 35-260 nm range. Irradiation with Ar2+ ions (1.7 MeV energy and a fluence of up to 1 × 1017 ions/cm2) is utilized to generate a uniform distribution of atomic displacements within the films. X-ray fluorescence (XRF) and alpha-particle emission spectroscopy showed that the films were stable under irradiation and did not undergo sputtering degradation. X-ray photoelectron spectroscopy (XPS) showed that the stoichiometry and uranium ionic concentrations remain stable during irradiation. The high-resolution electron microscopy imaging and electron diffraction analysis demonstrated that at the early stages of irradiation (below 1 × 1016 ion/cm2) UO2 films show complete amorphization and beam-induced densification (sintering), resulting in a pore-free disordered film. Prolonged irradiation (5 × 1016 ion/cm2) is shown to trigger a crystallization process at the surface of the films that moves toward the UO2/Al interface, converting the entire amorphous material into a highly crystalline film. This work reports on an entirely different radiation-induced restructuring of the nanoscale UO2 compared to the coarse-grained counterpart. The preparation of thin UO2 films deposited on Al substrates fills an area of national need within the stockpile stewardship program of the National Nuclear Security Administration and fundamental research with actinides. The method reported in this work produces pure, robust, and uniform thin-film actinide targets for nuclear science measurements.

4.
J Chem Phys ; 152(10): 104704, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171230

ABSTRACT

The influence of high-energy (1.6 MeV) Ar2+ irradiation on the interfacial interaction between cerium oxide thin films (∼15 nm) with a SiO2/Si substrate is investigated using transmission electron microscopy, ultrahigh vacuum x-ray photoelectron spectroscopy (XPS), and a carbon monoxide (CO) oxidation catalytic reaction using ambient pressure XPS. The combination of these methods allows probing the dynamics of vacancy generation and its relation to chemical interactions at the CeO2/SiO2/Si interface. The results suggest that irradiation causes amorphization of some portion of CeO2 at the CeO2/SiO2/Si interface and creates oxygen vacancies due to the formation of Ce2O3 at room temperature. The subsequent ultra-high-vacuum annealing of irradiated films increases the concentration of Ce2O3 with the simultaneous growth of the SiO2 layer. Interactions with CO molecules result in an additional reduction of cerium and promote the transition of Ce2O3 to a silicate compound. Thermal annealing of thin films exposed to oxygen or carbon monoxide shows that the silicate phase is highly stabile even at 450 °C.

5.
Inorg Chem ; 58(9): 5583-5592, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30978012

ABSTRACT

A single-step method for the preparation of metastable ε-Fe3N nanoparticles by combustion of reactive gels containing iron nitrate (Fe(NO3)3) and hexamethylenetetramine (C6H12N4) in an inert atmosphere is reported. The results of Fourier transform infrared spectroscopy (FTIR) and thermal analysis coupled with dynamic mass spectrometry revealed that the exothermic decomposition of a coordination complex formed between Fe(NO3)3 and HMTA is responsible for the formation of ε-Fe3N nanoscale particles with sizes of 5-15 nm. The magnetic properties between 5 and 350 K are characterized using a superconducting quantum interference device (SQUID) magnetometer, revealing a ferromagnetic behavior with a low-temperature magnetic moment of 1.09 µB/Fe, high room temperature saturation magnetization (∼80 emu/g), and low remanent magnetization (∼15 emu/g). The obtained value for the Curie temperature of ∼522 K is close to that (∼575 K) for bulk ε-Fe3N reported in the literature.

6.
Chem Rev ; 116(23): 14493-14586, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27610827

ABSTRACT

Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol-gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual properties are outlined. To demonstrate the versatility of the approach, several application categories of SCS produced materials, such as for energy conversion and storage, optical devices, catalysts, and various important nanoceramics (e.g., bio-, electro-, magnetic), are discussed.

7.
ACS Appl Mater Interfaces ; 7(21): 11272-9, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25915560

ABSTRACT

We have investigated the effect of accelerated ion beam irradiation on the structure and reactivity of multilayer sputter deposited Al/Ni nanomaterials. Carbon and aluminum ion beams with different charge states and intensities were used to irradiate the multilayer materials. The conditions for the irradiation-assisted self-ignition of the reactive materials and corresponding ignition thresholds for the beam intensities were determined. We discovered that relatively short (40 min or less) ion irradiations enhance the reactivity of the Al/Ni nanomaterials, that is, significantly decrease the thermal ignition temperatures (Tig) and ignition delay times (τig). We also show that irradiation leads to atomic mixing at the Al/Ni interfaces with the formation of an amorphous interlayer, in addition to the nucleation of small (2-3 nm) Al3Ni crystals within the amorphous regions. The amorphous interlayer is thought to enhance the reactivity of the multilayer energetic nanomaterial by increasing the heat of the reaction and by speeding the intermixing of the Ni and the Al. The small Al3Ni crystals may also enhance reactivity by facilitating the growth of this Al-Ni intermetallic phase. In contrast, longer irradiations decrease reactivity with higher ignition temperatures and longer ignition delay times. Such changes are also associated with growth of the Al3Ni intermetallic and decreases in the heat of reaction. Drawing on this data set, we suggest that ion irradiation can be used to fine-tune the structure and reactivity of energetic nanomaterials.

8.
J Vis Exp ; (98): e52624, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25868065

ABSTRACT

High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites.


Subject(s)
Nanocomposites/chemistry , Microscopy, Electron, Scanning , Particle Size , Powders/chemistry , Temperature
9.
ACS Appl Mater Interfaces ; 5(8): 2943-51, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23510512

ABSTRACT

Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation. In confirmation of photoactivity, the films of nSi exhibit prompt bleaching following femtosecond laser pulse excitation resulting from the photoinduced charge separation. Photocurrent generation observed upon AM 1.5 excitation of these films in a photoelectrochemical cell shows strong dependence on the thickness of the intrinsic silica shell that encompasses the nanoparticles and hinders interparticle electron transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...