Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 21(1): 183, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690824

ABSTRACT

BACKGROUND: To sustain high universal Long-Lasting Insecticidal Nets (LLINs) coverage, affordable nets that provide equivalent or better protection than standard LLINs, are required. Test facilities evaluating new LLINs require compliance to Good Laboratory Practice (GLP) standards to ensure the quality and integrity of test data. Following GLP principles allows for the reconstruction of activities during the conduct of a study and minimizes duplication of efficacy testing. This case study evaluated the efficacy of two LLINs: SafeNet NF® and SafeNet® LLIN. METHODS: The study was conducted according to GLP principles and followed World Health Organization guidelines for evaluating LLINs. The LLINs were assessed in experimental huts against wild, pyrethroid-resistant Anopheles arabiensis mosquitoes. Nets were either unwashed or washed 20 times and artificially holed to simulate a used torn net. Blood-feeding inhibition and mortality were compared with a positive control (Interceptor® LLIN) and an untreated net. RESULTS: Mosquito entry in the huts was reduced compared to negative control for the unwashed SafeNet NF, washed Safenet LLIN and the positive control arms. Similar exiting rates were found for all the treatment arms. Significant blood-feeding inhibition was only found for the positive control, both when washed and unwashed. All insecticide treatments induced significantly higher mortality compared to an untreated net. Compared to the positive control, the washed and unwashed SafeNet NF® resulted in similar mortality. For the SafeNet® LLINs the unwashed net had an equivalent performance, but the mortality for the washed net was significantly lower than the positive control. Internal audits of the study confirmed that all critical phases complied with Standard Operating Procedures (SOPs) and the study plan. The external audit confirmed that the study complied with GLP standards. CONCLUSIONS: SafeNet NF® and SafeNet® LLIN offered equivalent protection to the positive control (Interceptor® LLIN). However, further research is needed to investigate the durability, acceptability, and residual efficacy of these nets in the community. This study demonstrated that GLP-compliant evaluation of LLINs can be successfully conducted by African research institutions.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Pyrethrins , Animals , Anopheles/physiology , Insecticide Resistance , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors , Organisation for Economic Co-Operation and Development , Pyrethrins/pharmacology
2.
Insects ; 13(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35735860

ABSTRACT

Indoor residual spraying (IRS) has changed little since its introduction in the 1940s. Manual spraying is still prone to variation in insecticide dose. To improve the application of IRS in experimental hut trials, an automated track sprayer was developed, which regulates the speed of application and the distance of the nozzle from the wall, two key sources of variation. The automated track sprayer was compared to manual spraying, firstly using fluorescein solution in controlled indoor settings, and secondly in experimental huts in Tanzania using several IRS products. Manual spraying produced greater variation with both fluorescein and insecticide applications. Both manual and automated spray methods under-dosed the actual dose sprayed compared to the target dose. Overall, the track sprayer treats surfaces more consistently, offering a potential improvement over manual spraying for experimental hut evaluation of new IRS formulations.

3.
PLoS One ; 16(3): e0248026, 2021.
Article in English | MEDLINE | ID: mdl-33657179

ABSTRACT

Novel chemistry for vector control is urgently needed to counter insecticide resistance in mosquitoes. Here a new meta-diamide insecticide, broflanilide (TENEBENALTM), was evaluated in East African experimental huts in Moshi, northern Tanzania. Two consecutive experimental hut trials with broflanilide 50WP were conducted; the first evaluating the efficacy of three concentrations, 50 mg/m2, 100 mg/m2, and 200 mg/m2 using a prototype formulation, and the second trial evaluating an improved formulation. The IRS treatments were applied on both mud and concrete surfaces and efficacy was monitored over time. The mortality, blood-feeding inhibition and exiting behaviour of free-flying wild mosquitoes was compared between treatment arms. Additionally, cone assays with pyrethroid-susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. The first trial showed a dosage-mortality response of the prototype formulation and 3-8 months of residual activity, with longer activity on concrete than mud. The second trial with an improved formulation showed prolonged residual efficacy of the 100 mg/m2 concentration to 5-6 months on mud, and mosquito mortality on the concrete surface ranged between 94-100% for the full duration of the trial. In both trials, results with free-flying, wild Anopheles arabiensis echoed the mortality trend shown in cone assays, with the highest dose inducing the highest mortality and the improved formulation showing increased mortality rates. No blood-feeding inhibition or insecticide-induced exiting effects were observed with broflanilide. Broflanilide 50WP was effective against both susceptible and pyrethroid-resistant mosquito strains, demonstrating an absence of cross resistance between broflanilide and pyrethroids. The improved formulation, which has now been branded VECTRONTM T500, resulted in a prolonged residual efficacy. These results indicate the potential of this insecticide as an addition to the arsenal of IRS products needed to maintain both control of malaria and resistance management of malaria-transmitting mosquitoes.


Subject(s)
Anopheles/drug effects , Benzamides/toxicity , Insecticides/toxicity , Mosquito Control , Mosquito Vectors/drug effects , Pyrethrins/toxicity , Animals , Humans , Insecticide Resistance/drug effects , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Tanzania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...