Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38645153

ABSTRACT

Background: Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods: We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results: We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions: Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.

2.
Cell Rep ; 43(2): 113780, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363674

ABSTRACT

Autophagy is a conserved cellular process, and its dysfunction is implicated in cancer and other diseases. Here, we employ an in vivo CRISPR screen targeting genes implicated in the regulation of autophagy to identify the Nsfl1c gene encoding p47 as a suppressor of human epidermal growth factor receptor 2 (HER2)+ breast cancer metastasis. p47 ablation specifically increases metastasis without promoting primary mammary tumor growth. Analysis of human breast cancer patient databases and tissue samples indicates a correlation of lower p47 expression levels with metastasis and decreased survival. Mechanistic studies show that p47 functions in the repair of lysosomal damage for autophagy flux and in the endosomal trafficking of nuclear factor κB essential modulator for lysosomal degradation to promote metastasis. Our results demonstrate a role and mechanisms of p47 in the regulation of breast cancer metastasis. They highlight the potential to exploit p47 as a suppressor of metastasis through multiple pathways in HER2+ breast cancer cells.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Animals , Female , Breast Neoplasms/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Autophagy/genetics , Databases, Factual
3.
Autophagy ; 20(3): 525-540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37733921

ABSTRACT

Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupting the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy blockade and can be activated to make breast cancers more immunogenic.Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenylhydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune checkpoint inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1.


Subject(s)
Breast Neoplasms , Macroautophagy , Humans , Female , Autophagy , CD8-Positive T-Lymphocytes , T-Lymphocytes , Protein Serine-Threonine Kinases
4.
Cancers (Basel) ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35053617

ABSTRACT

It is a major challenge to treat metastasis due to the presence of heterogenous BCSCs. Therefore, it is important to identify new molecular targets and their underlying molecular mechanisms in various BCSCs to improve treatment of breast cancer metastasis. Here, we performed RNA sequencing on two distinct co-existing BCSC populations, ALDH+ and CD29hi CD61+ from PyMT mammary tumor cells and detected upregulation of biglycan (BGN) in these BCSCs. Genetic depletion of BGN reduced BCSC proportions and tumorsphere formation. Furthermore, BCSC associated aggressive traits such as migration and invasion were significantly reduced by depletion of BGN. Glycolytic and mitochondrial metabolic assays also revealed that BCSCs exhibited decreased metabolism upon loss of BGN. BCSCs showed decreased activation of the NFκB transcription factor, p65, and phospho-IκB levels upon BGN ablation, indicating regulation of NFκB pathway by BGN. To further support our data, we also characterized CD24-/CD44+ BCSCs from human luminal MCF-7 breast cancer cells. These CD24-/CD44+ BCSCs similarly exhibited reduced tumorigenic phenotypes, metabolism and attenuation of NFκB pathway after knockdown of BGN. Finally, loss of BGN in ALDH+ and CD29hi CD61+ BCSCs showed decreased metastatic potential, suggesting BGN serves as an important therapeutic target in BCSCs for treating metastasis of breast cancer.

5.
Surgery ; 171(1): 235-244, 2022 01.
Article in English | MEDLINE | ID: mdl-34565609

ABSTRACT

BACKGROUND: Autophagy is a highly conserved process for maintaining cellular homeostasis. Upregulation of autophagy promotes metastasis by promoting the cancer stem cell state while also stimulating tumor cell migration and invasion. We hypothesized that autophagy upregulation would be critical for cancer stem cell maintenance as well as cellular migration and invasion in thyroid cancer. METHODS: Validated papillary (MDA-T32, MDA-T68), follicular (FTC-133), and anaplastic (ATC-8505c) human thyroid cancer cell lines in culture were first assessed for autophagic capacity after bafilomycin clamping. Cancer stem cells were quantified by flow cytometry for aldehyde dehydrogenase and thyrosphere formation assay. Scratch migration and Matrigel invasion assays were performed in the presence of known autophagy inhibitors: Lys05, chloroquine, and FIP200siRNA. RESULTS: Autophagy activity was observed across all cell lines. Thyrosphere formation, aldehyde dehydrogenase activity, and CD44 expression were reduced with inhibition of autophagy in MDA-T32, MDA-T68, FTC-133, and 8505c cells. Similarly, cell migration and invasion were attenuated: 42% (FIP200siRNA), 78% (Lys05), P < .001 in MDA-T32 cells; 54% (FIP200siRNA), 67% (Lys05), P < .001 in MDA-T68 cells; 73% (FIP200siRNA), 71% (Lys05), P < .001) in FTC-133 cells; and 60% (FIP200siRNA), 90% (Lys05), P < .001 in 8505c cells. Invasion assays demonstrated a 73%, 39%, 75%, and 65.1% reduction in the presence of Lys05 in T32, T68, FTC-133, and 8505c cells, respectively. We observed similar reductions in invasion with FIP200siRNA: 61%, 62%, 55%, and 81.4% in T32, T68, FTC-133, and 8505c cells. CONCLUSION: Autophagy is upregulated across multiple thyroid cancer subtypes. In thyroid cancer cell lines, inhibition of autophagy attenuates cancer stem cell viability, cell migration, and invasion suggesting a role for autophagy in the progression of thyroid cancer. Greater understanding of autophagy regulation in thyroid cancer will aid in developing targeted therapeutics.


Subject(s)
Autophagy/drug effects , Cell Movement/drug effects , Chloroquine/pharmacology , Thyroid Neoplasms/drug therapy , Cell Line, Tumor , Chloroquine/therapeutic use , Humans , Macrolides/pharmacology , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Thyroid Neoplasms/pathology
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166228, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34311079

ABSTRACT

Breast cancer stem cells (CSCs) are distinct CD44+-subpopulations that are involved in metastasis and chemoresistance. However, the underlying molecular mechanism of CD44 in breast CSCs-mediated tumorigenesis remains elusive. We observed high CD44 expression in advanced-stage clinical breast tumor samples. CD44 activation in breast CSCs sorted from various triple negative breast cancer (TNBC) cell lines induced proliferation, migration, invasion, mammosphere formation that were reversed in presence of inhibitor, 4-methyl umbelliferone or CD44 silencing. CD44 activation in breast CSCs induced Src, Akt, and nuclear translocation of pSTAT3. PCR arrays revealed differential expression of a metabolic gene, Lipoprotein lipase (LPL), and transcription factor, SNAI3. Differential transcriptional regulation of LPL by pSTAT3 and SNAI3 was confirmed by promoter-reporter and chromatin immunoprecipitation analysis. Orthotopic xenograft murine breast tumor model revealed high tumorigenicity of CD24-/CD44+-breast CSCs as compared with CD24+-breast cancer cells. Furthermore, stable breast CSCs-CD44 shRNA and/or intratumoral administration of Tetrahydrolipstatin (LPL inhibitor) abrogated tumor progression and neoangiogenesis. Thus, LPL serves as a potential target for an efficacious therapeutics against aggressive breast cancer.


Subject(s)
Breast Neoplasms/genetics , Carcinogenesis/genetics , Hyaluronan Receptors/metabolism , Lipoprotein Lipase/genetics , Neoplastic Stem Cells/pathology , Animals , Breast/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carcinogenesis/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Hyaluronan Receptors/genetics , Lipoprotein Lipase/antagonists & inhibitors , Mice , Orlistat/pharmacology , Orlistat/therapeutic use , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Xenograft Model Antitumor Assays
7.
Anticancer Agents Med Chem ; 20(12): 1469-1474, 2020.
Article in English | MEDLINE | ID: mdl-32324523

ABSTRACT

BACKGROUND: Discovery of small molecules that inhibit tubulin polymerization is an attractive strategy for the development of new and improved anti-proliferative agents. OBJECTIVE: A series of novel 2-sulfonyl-1,1-diarylethenes were designed towards this end keeping in view the favorable chemical and pharmacological virtues of unsaturated sulfones. METHODS: Rapid, convenient and efficient two-step assembly of the designed molecules was achieved by the vicinal iodo-sulfonylation-Suzuki coupling sequence. RESULTS: As hypothesized, these compounds showed good anti-proliferative activity against different tissuespecific cancer cell lines: MCF-7, DU-145, A-549, HepG2, and HeLa. The most active compound, pnitrophenyl ring-bearing analog, exhibited an IC50 value of 0.90µM against A-549 cells. Flow cytometry studies on this derivative revealed that it arrests the cell cycle of A-549 cells at the G2/M phase. This compound exhibited molecular binding to tubulin as well as tubulin polymerization inhibition comparable to that of colchicine. CONCLUSION: A new class of potent, tubulin binding anticancer agents based on 1,1,-diarylvinyl sulfone scaffold has been designed and synthesized.


Subject(s)
Antineoplastic Agents/pharmacology , Sulfones/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
8.
FEBS J ; 286(11): 2167-2192, 2019 06.
Article in English | MEDLINE | ID: mdl-30873742

ABSTRACT

Glutathione S-transferase omega 1 (GSTO1) contributes to the inactivation of a wide range of drug compounds via conjugation to glutathione during phase reactions. Chemotherapy-induced GSTO1 expression in breast cancer cells leads to chemoresistance and promotes metastasis. In search of novel GSTO1 inhibitors, we identified S2E, a thia-Michael adduct of sulfonamide chalcone with low LC50 (3.75 ± 0.73 µm) that binds to the active site of GSTO1, as revealed by molecular docking (glide score: -8.1), cellular thermal shift assay and fluorescence quenching assay (Kb  ≈ 10 × 105  mol·L-1 ). Docking studies confirmed molecular interactions between GSTO1 and S2E, and identified the hydrogen bond donor Val-72 (2.14 Å) and hydrogen bond acceptor Ser-86 (2.77 Å). Best pharmacophore hypotheses could effectively map S2E and identified the 4-methyl group of the benzene sulfonamide ring as crucial to its anti-cancer activity. Lack of a thiophenyl group in another analog, 2e, reduced its efficacy as observed by cytotoxicity and pharmacophore matching. Furthermore, GSTO1 inhibition by S2E, along with tamoxifen, led to a significant increase in apoptosis and decreased migration of aggressive MDA-MB-231 cells, as well as significantly decreased migration, invasion and mammosphere formation in sorted breast cancer stem cells (CSCs, CD24- /CD44+ ). GSTO1 silencing in breast CSCs also significantly increased apoptosis and decreased migration. Mechanistically, GSTO1 inhibition activated the c-Jun N-terminal kinase stress kinase, inducing a mitochondrial apoptosis signaling pathway in breast CSCs via the pro-apoptotic proteins BAX, cytochrome c and cleaved caspase 3. Our study elucidated the role of the GSTO1 inhibitor S2E as a potential therapeutic strategy for preventing chemotherapy-induced breast CSC-mediated cancer metastasis and recurrence.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/enzymology , Glutathione Transferase/antagonists & inhibitors , MAP Kinase Kinase 4/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplastic Stem Cells/enzymology , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Division/drug effects , Cell Movement/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Models, Molecular , Molecular Docking Simulation , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/pathology , Oxidative Stress/drug effects , Protein Interaction Mapping , Signal Transduction/drug effects , Structure-Activity Relationship , Tamoxifen/pharmacology , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology
9.
ACS Omega ; 3(1): 63-75, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-30023766

ABSTRACT

The total synthesis of highly potent and scarcely available marine natural product (-)-jahanyne was attempted resulting in a solution-phase synthesis of pruned versions with comparable activity. A simple and facile synthetic route was employed for the preparation of pruned congeners and would be scalable. The lipophilic tail of the natural product was synthesized from R-(+)-citronellol, utilizing easily available chemicals. All the synthesized compounds were screened for apoptotic activity against a panel of cell lines. These compounds depicted marked binding to B cell lymphoma 2 till 50 °C in cellular thermal shift analysis.

10.
Can J Physiol Pharmacol ; 96(8): 728-741, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29558627

ABSTRACT

Apoptotic hepatocytes release factors that activate hepatic stellate cells (HSCs), thereby inducing hepatic fibrosis. In the present study, in vivo and in vitro injury models were established using acetaminophen, ethanol, carbon tetrachloride, or thioacetamide. Histology of hepatotoxicant-induced diseased hepatic tissue correlated with differential expression of fibrosis-related genes. A marked increase in co-staining of transforming growth factor ß receptor type II (TGFRIIß) - desmin or α-smooth muscle actin - platelet-derived growth factor receptor ß (PDGFRß), markers of activated HSCs, in liver sections of these hepatotoxicant-treated mice also depicted an increase in Annexin V - cytokeratin expressing hepatocytes. To understand the molecular mechanisms of disease pathology, in vitro experiments were designed using the conditioned medium (CM) of hepatotoxicant-treated HepG2 cells supplemented to HSCs. A significant increase in HSC proliferation, migration, and expression of fibrosis-related genes and protein was observed, thereby suggesting the characteristics of an activated phenotype. Treating HepG2 cells with hepatotoxicants resulted in a significant increase in mRNA expression of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor ß (TGFß). CM supplemented to HSCs resulted in increased phosphorylation of PDGFRß and TGFRIIß along with its downstream effectors, extracellular signal-related kinase 1/2 and focal adhesion kinase. Neutralizing antibodies against PDGF-BB and TGFß effectively perturbed the hepatotoxicant-treated HepG2 cell CM-induced activation of HSCs. This study suggests PDGF-BB and TGFß as potential molecular targets for developing anti-fibrotic therapeutics.


Subject(s)
Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver/injuries , Proto-Oncogene Proteins c-sis/metabolism , Transforming Growth Factor beta/metabolism , Animals , Apoptosis/drug effects , Becaplermin , Body Weight/drug effects , Cell Transdifferentiation/drug effects , Culture Media, Conditioned/pharmacology , Female , Fibrosis , Gene Expression Regulation/drug effects , Hep G2 Cells , Hepatic Stellate Cells/drug effects , Humans , Lipid Peroxidation/drug effects , Liver/pathology , Male , Mice, Inbred C57BL , Neutralization Tests , Organ Size/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects
11.
FEBS J ; 284(12): 1830-1854, 2017 06.
Article in English | MEDLINE | ID: mdl-28398698

ABSTRACT

The recurrence of breast cancer in patients is a persistent challenge to the medical fraternity. Breast tumor contains a small population of cells with high tumor initiating and metastatic potential, known as cancer stem cells (CSCs), which are resistant to existing chemotherapeutics. CSCs contribute to the aggressiveness of triple negative breast cancers (TNBCs), thereby necessitating the identification of molecular targets on breast CSCs. TNBC cell line MDA-MB-231, in comparison with MCF-7, demonstrated a higher expression of epidermal growth factor receptor (EGFR). Thus, the naturally occurring flavanone, chrysin, with limited potential as a chemotherapeutic agent, was structurally modified by designing an analog with EGFR binding affinity using a molecular docking approach and subsequently synthesised. Chrysin analog CHM-09 and known EGFR inhibitors demonstrated a comparable anti-proliferative, anti-migratory activity along with the induction of apoptosis and cell cycle arrest in MDA-MB-231. Furthermore, sorted CD24- /CD44+ -breast CSCs and CD24+ -breast cancer cells from MDA-MB-231 demonstrated a markedly high expression of EGFR in the former than in the latter. CHM-09 and EGFR inhibitors could perturb EGF-induced EGFR signalling of breast CSC proliferation, migration, mammosphere formation and mesenchymal tri-lineage differentiation. CHM-09 or EGFR inhibitors not only led to inactivation of EGFR downstream signalling pathways such as Akt, extracellular signal regulated kinase and signal transducer and activator of transcription 3, but also induction of mesenchymal-epithelial transition as confirmed by decreased N-cadherin and increased E-cadherin expression. Finally, combinatorial treatment of EGFR inhibitors and doxorubicin led to significant increase in breast CSCs responsiveness to a chemotherapeutic drug. The results of the present study suggest that EGFR is a therapeutic target in breast CSCs and that abrogation of EGFR signalling along with chemotherapeutic drugs is an effective approach against breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/antagonists & inhibitors , Neoplastic Stem Cells/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , ErbB Receptors/metabolism , Female , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/drug therapy , Tumor Cells, Cultured
12.
Int J Biol Macromol ; 92: 988-997, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27498416

ABSTRACT

In the present study we synthesized lignin-tetra ethoxysilane (TEOS) nanocomposite and characterized it using UV-spectroscopy, Fourier Transform Infra-red spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Field Emission-Scanning Electron Microscopy (FE-SEM) and Scanning Electron Microscopy (SEM). XRD spectra and SEM micrographs confirmed a relatively high degree of crystallinity (peaks located at lower angle, 2θ=12° and 2θ=22.0°) and porous nature of nanocomposite. The lignin-TEOS nanocomposites depicted antibacterial activity against the test microorganisms (Pseudomonas aerugenosa MTCC 741, Escherichia coli MTCC 739, Bacillus subtilis MTCC 441 and Staphylococcus aureus MTCC 96) whereas at the same concentration did not show any significant cytotoxicity against various tissue-specific cancer cell lines such as breast cancer: MCF-7, MDA-MB-231, MDA-MB-468, BT-549; lung cancer: A-549; prostate cancer: PC-3, Du-145; as well as primary control cells-Human hepatic stellate cells (HHSteCs). The present study suggests the plausible translational role of these nanocomposites as an antimicrobial agent for wound dressings due to its potent antimicrobial activity with low toxicity to non-target eukaryotic cells. Nevertheless, these nanocomposites may also be used as packaging materials due to their antimicrobial activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Eukaryotic Cells/cytology , Nanocomposites/chemistry , Cell Death/drug effects , Cell Line, Tumor , Eukaryotic Cells/drug effects , Humans , Lignin/chemical synthesis , Microbial Sensitivity Tests , Nanocomposites/ultrastructure , Silanes/chemistry , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...