Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Opt Lett ; 49(11): 3054-3057, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824326

ABSTRACT

Photoacoustic imaging (PAI) utilizes the photoacoustic effect to record both vascular and functional characteristics of a biological tissue. Photoacoustic signals have typically low amplitude that cannot be read efficiently by data acquisition systems. This necessitates the use of one or more amplifiers. These amplifiers are somewhat bulky (e.g., the ZFL-500LN+, Mini-Circuits, USA, or 351A-3-50-NI, Analog Modules Inc., USA). Here, we describe the fabrication and development process of a transducer with a built-in low-noise preamplifier that is encased within the transducer housing. This new, to the best of our knowledge, design could be advantageous for applications where a compact transducer + preamplifier is required. We demonstrate the performance of this compact detection unit in a laser scanning photoacoustic microscopy system by imaging a rat ear ex vivo and a rat brain vasculature in vivo.


Subject(s)
Equipment Design , Photoacoustic Techniques , Transducers , Photoacoustic Techniques/instrumentation , Photoacoustic Techniques/methods , Animals , Rats , Miniaturization , Brain/diagnostic imaging , Brain/blood supply , Ear/diagnostic imaging , Ear/blood supply , Amplifiers, Electronic
2.
Sci Rep ; 14(1): 8900, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632358

ABSTRACT

Mohs micrographic surgery (MMS) is considered the gold standard for treating high-risk cutaneous basal cell carcinoma (BCC), but is expensive, time-consuming, and can be unpredictable as to how many stages will be required or how large the final lesion and corresponding surgical defect will be. This study is meant to investigate whether optical coherence tomography (OCT), a highly researched modality in dermatology, can be used preoperatively to map out the borders of BCC, resulting in fewer stages of MMS or a smaller final defect. In this prospective study, 22 patients with BCC undergoing surgical excision were enrolled at a single institution. All patients had previously received a diagnostic biopsy providing confirmation of BCC and had been referred to our center for excision with MMS. Immediately prior to performing MMS, OCT was used to map the borders of the lesion. MMS then proceeded according to standard protocol. OCT images were compared to histopathology for agreement. Histopathologic analysis of 7 of 22 MMS specimens (32%) revealed a total absence of BCC, indicating resolution of BCC after previous diagnostic biopsy. This outcome was correctly predicted by OCT imaging in 6 of 7 cases (86%). Nine tumors (9/22, 41%) had true BCC and required a single MMS stage, which was successfully predicted by pre-operative OCT analysis in 7 of 9 cases (78%). The final six tumors (27%) had true BCC and required two MMS stages for complete excision; preoperative OCT successfully predicted the need for a second stage in five cases (5/6, 83.3%). Overall, OCT diagnosed BCC with 95.5% accuracy (Cohen's kappa, κ = 0.89 (p-value = < 0.01) in the center of the lesion. Following a diagnostic biopsy, OCT can be used to verify the existence or absence of residual basal cell carcinoma. When residual tumor is present that requires excision with MMS, OCT can be used to predict tumor borders, optimize surgery and minimize the need for additional surgical stages.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Mohs Surgery/methods , Tomography, Optical Coherence/methods , Prospective Studies , Carcinoma, Basal Cell/pathology , Neoplasm Recurrence, Local/surgery
3.
Neurophotonics ; 11(1): 015007, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38344025

ABSTRACT

Significance: There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim: Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach: Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion: We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.

4.
J Biomed Opt ; 29(Suppl 1): S11518, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223680

ABSTRACT

Significance: Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim: Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach: A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results: PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions: PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.


Subject(s)
Melanoma , Photoacoustic Techniques , Skin Neoplasms , Animals , Humans , Melanoma/pathology , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Photoacoustic Techniques/methods , Early Detection of Cancer , Tomography, X-Ray Computed
5.
J Biophotonics ; 17(3): e202300117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010300

ABSTRACT

Various reconstruction algorithms have been implemented for linear array photoacoustic imaging systems with the goal of accurately reconstructing the strength absorbers within the tissue being imaged. Since the existing algorithms have been introduced by different research groups and the context of performance evaluation was not consistent, it is difficult to make a fair comparison between them. In this study, we systematically compared the performance of 10 published image reconstruction algorithms (DAS, UBP, pDAS, DMAS, MV, EIGMV, SLSC, GSC, TR, and FD) using in-vitro phantom data. Evaluations were conducted based on lateral resolution of the reconstructed images, computational time, target detectability, and noise sensitivity. We anticipate the outcome of this study will assist researchers in selecting appropriate algorithms for their linear array PA imaging applications.


Subject(s)
Photoacoustic Techniques , Photoacoustic Techniques/methods , Diagnostic Imaging , Phantoms, Imaging , Algorithms , Image Processing, Computer-Assisted/methods
6.
Photoacoustics ; 33: 100551, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021296

ABSTRACT

Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.

7.
Photoacoustics ; 33: 100549, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37664559

ABSTRACT

Intraventricular (IVH) and periventricular (PVH) hemorrhages in preterm neonates are common because the periventricular blood vessels are still developing up to 36 weeks and are fragile. Currently, transfontanelle ultrasound (US) imaging is utilized for screening for IVH and PVH, largely through the anterior fontanelle. However for mild hemorrhages, inconclusive diagnoses are common, leading to failure to detect IVH/PVH or, when other clinical symptoms are present, use of second stage neuroimaging modalities requiring transport of vulnerable patients. Yet even mild IVH/PVH increases the risk of moderate-severe neurodevelopmental impairment. Here, we demonstrate the capability of transfontanelle photoacoustic imaging (TFPAI) to detect IVH and PVH in-vivo in a large animal model. TFPAI was able to detect IVH/PVH as small as 0.3 mL in volume in the brain (p < 0.05). By contrast, US was able to detect hemorrhages as small as 0.5 mL. These preliminary results suggest TFPAI could be translated into a portable bedside imaging probe for improved diagnosis of clinically relevant brain hemorrhages in neonates.

9.
Photoacoustics ; 32: 100538, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37575972

ABSTRACT

We have developed and optimized an imaging system to study and improve the detection of brain hemorrhage and to quantify oxygenation. Since this system is intended to be used for brain imaging in neonates through the skull opening, i.e., fontanelle, we called it, Transfontanelle Photoacoustic Imaging (TFPAI) system. The system is optimized in terms of optical and acoustic designs, thermal safety, and mechanical stability. The lower limit of quantification of TFPAI to detect the location of hemorrhage and its size is evaluated using in-vitro and ex-vivo experiments. The capability of TFPAI in measuring the tissue oxygenation and detection of vasogenic edema due to brain blood barrier disruption are demonstrated. The results obtained from our experimental evaluations strongly suggest the potential utility of TFPAI, as a portable imaging modality in the neonatal intensive care unit. Confirmation of these findings in-vivo could facilitate the translation of this promising technology to the clinic.

10.
J Biophotonics ; 16(11): e202300103, 2023 11.
Article in English | MEDLINE | ID: mdl-37468445

ABSTRACT

One common method to improve the low signal-to-noise ratio of the photoacoustic (PA) signal generated from weak absorbers or absorbers located in deep tissue is to acquire signal multiple times from the same region and perform averaging. However, pulse-to-pulse laser fluctuations together with differences in the beam profile of the pulses create undeterministic multiple scattering processes in the tissue. This phenomenon consequently induces a spatiotemporal displacement in the PA signal samples which in turn deteriorates the effectiveness of signal averaging. Here, we present an adaptive coherent weighted averaging algorithm to adjust the locations and values of PA signal samples for more efficient signal averaging. The proposed method is evaluated in a linear array-based PA imaging setup of ex vivo sheep brain.


Subject(s)
Photoacoustic Techniques , Tomography, X-Ray Computed , Animals , Sheep , Signal-To-Noise Ratio , Phantoms, Imaging , Algorithms , Brain/diagnostic imaging , Photoacoustic Techniques/methods
11.
Theranostics ; 13(10): 3346-3367, 2023.
Article in English | MEDLINE | ID: mdl-37351178

ABSTRACT

Hypoxia causes the expression of signaling molecules which regulate cell division, lead to angiogenesis, and further, in the tumor microenvironment, promote resistance to chemotherapy and radiotherapy, and induce metastasis. Photoacoustic imaging (PAI) takes advantage of unique absorption characteristics of chromophores in tissues and provides the opportunity to construct images with a high degree of spatial and temporal resolution. In this review, we discuss the physiologic characteristics of tumor hypoxia, and current applications of PAI using endogenous (label free imaging) and exogenous (organic and inorganic) contrast agents. Features of various methods in terms of their efficacy for determining physiologic and proteomic phenomena are analyzed. This review demonstrates that PAI has the potential to understand tumor growth and metastasis development through measurement of regulatory molecule concentrations, oxygen gradients, and vascular distribution.


Subject(s)
Neoplasms , Photoacoustic Techniques , Humans , Photoacoustic Techniques/methods , Proteomics , Tumor Hypoxia , Neoplasms/diagnostic imaging , Optical Imaging/methods , Tumor Microenvironment
12.
Skin Res Technol ; 29(4): e13279, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37113090

ABSTRACT

BACKGROUND: Phacomatosis pigmentokeratotica (PPK) is a distinct and rare type of epidermal nevus syndrome characterized by coexisting nonepidermolytic organoid sebaceous nevus (SN) with one or more speckled lentiginous nevi (SLN). Atypical nevi including compound Spitz and compound dysplastic may manifest within regions of SLN. Patients with PPK, or similar atypical nevus syndromes, may be subject to a significant lifetime number of biopsies, leading to pain, scarring, anxiety, financial burden, and decreased quality of life. The current literature includes case reports, genetics, and associated extracutaneous symptoms of PPK, but use of noninvasive imaging techniques have not been explored. We aim to investigate the value of high-frequency ultrasound (HFUS) and optical coherence tomography (OCT) in discriminating morphological features of pigmented lesions and nevus sebaceous within one patient with PPK. MATERIALS AND METHODS: Two modalities, (1) HFUS imaging, based on acoustic properties and (2) OCT imaging, based on optical properties, were used to image a patient with PPK. Benign pigmented lesions, which may raise clinical suspicion for significant atypia, and nevus sebaceous, were selected on different areas of the body to be studied. RESULTS: Five pigmented lesions and one area of nevus sebaceous were imaged and analyzed for noninvasive features. Distinct patterns of hypoechoic features were seen on HFUS and OCT. CONCLUSION: HFUS provides a deep view of the tissue, with ability to differentiate gross structures beneath the skin. OCT provides a smaller penetration depth and a higher resolution. We have described noninvasive features of atypical nevi and nevus sebaceous on HFUS and OCT, which indicate benign etiology.


Subject(s)
Nevus , Skin Neoplasms , Humans , Tomography, Optical Coherence , Quality of Life , Skin Neoplasms/diagnostic imaging , Biopsy
13.
J Biophotonics ; 16(7): e202200313, 2023 07.
Article in English | MEDLINE | ID: mdl-37052299

ABSTRACT

Brain hemorrhage, specifically intraventricular hemorrhage (IVH), is considered one of the primary and leading causes of cerebral anomalies in neonates. Several imaging modalities including the most popular, cranial ultrasound, are not capable of detecting early stage IVHs. Photoacoustic imaging (PAI) exhibited great potential for detecting cerebral hemorrhage in studies limited to small animal models, but these models are not comparable to neonatal brain morphology. However, hemorrhage detection in large animal models using PAI is rare due to the complexity and cost of inducing hemorrhage in vivo. Moreover, in vitro studies are unable to represent the physiology and environment of the hemorrhagic lesion. Here, we proposed a pseudo hemorrhage implementation method in the sheep brain that allows us to mimic different hemorrhagic lesions ex vivo without compromising the complexity of cerebral imaging. This approach enables a true evaluation of PAI performance for detecting hemorrhages and can be utilized as a reference to optimize the PAI system for in vivo imaging.


Subject(s)
Brain , Cerebral Hemorrhage , Phantoms, Imaging , Photoacoustic Techniques , Brain/diagnostic imaging , Brain/pathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Photoacoustic Techniques/methods , Humans , Infant, Newborn , Animals , Sheep , Disease Models, Animal
14.
J Biophotonics ; 16(7): e202200316, 2023 07.
Article in English | MEDLINE | ID: mdl-36995028

ABSTRACT

The onset of intracerebral hemorrhage and its progression toward acute brain injury have been correlated with the concentration of unconjugated bilirubin (BR). In addition, BR has been considered a novel predictor of outcome from intracranial hemorrhage. Since the existing invasive approach for determining localized BR and biliverdin (BV) concentration within the hemorrhagic brain lesion is not feasible, the predictive capability of BR in terms of determining the onset of hemorrhage and understanding the consequences of its progression (age) is unknown. In this study, we have demonstrated a photoacoustic (PA) approach to the noninvasive measurement of BR-BV ratio that can be utilized longitudinally to approximate the onset of the hemorrhage. The PA imaging-based measurements of BV and BR in tissues and fluids can potentially be used to determine hemorrhage "age," quantitatively evaluate the hemorrhage resorption or detect a rebleeding, and assess responses to therapy and prognosis.


Subject(s)
Bilirubin , Biliverdine , Humans , Biliverdine/chemistry , Bilirubin/chemistry , Spectrum Analysis , Hemorrhage/diagnostic imaging
15.
J Biophotonics ; 16(7): e202200383, 2023 07.
Article in English | MEDLINE | ID: mdl-36998211

ABSTRACT

Photoacoustic microscopy (PAM) is a high-resolution imaging modality that has been mainly implemented with small field of view applications. Here, we developed a fast PAM system that utilizes a unique spiral laser scanning mechanism and a wide acoustic detection unit. The developed system can image an area of 12.5 cm2 in 6.4 s. The system has been characterized using highly detailed phantoms. Finally, the imaging capabilities of the system were further demonstrated by imaging a sheep brain ex vivo and a rat brain in vivo.


Subject(s)
Microscopy , Photoacoustic Techniques , Rats , Animals , Sheep , Microscopy/methods , Lasers , Light , Spectrum Analysis , Phantoms, Imaging , Photoacoustic Techniques/methods
16.
Sci Rep ; 12(1): 15394, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36100615

ABSTRACT

The capability of photoacoustic (PA) imaging to measure oxygen saturation through a fontanelle has been demonstrated in large animals in-vivo. We called this method, transfontanelle photoacoustic imaging (TFPAI). A surgically induced 2.5 cm diameter cranial window was created in an adult sheep skull to model the human anterior fontanelle. The performance of the TFPAI has been evaluated by comparing the PA-based predicted results against the gold standard of blood gas analyzer measurements.


Subject(s)
Photoacoustic Techniques , Adult , Animals , Blood Gas Analysis , Diagnostic Imaging , Humans , Oxygen , Photoacoustic Techniques/methods , Sheep
17.
Chemosensors (Basel) ; 10(5): 181, 2022 May.
Article in English | MEDLINE | ID: mdl-35909809

ABSTRACT

Acoustic biosensors are widely used in physical, chemical, and biosensing applications. One of the major concerns in acoustic biosensing is the delicacy of the medium through which acoustic waves propagate and reach acoustic sensors. Even a small airgap diminishes acoustic signal strengths due to high acoustic impedance mismatch. Therefore, the presence of a coupling medium to create a pathway for an efficient propagation of acoustic waves is essential. Here, we have reviewed the chemical, physical, and acoustic characteristics of various coupling material (liquid, gel-based, semi-dry, and dry) and present a guide to determine a suitable application-specific coupling medium.

18.
J Biophotonics ; 15(5): e202100350, 2022 05.
Article in English | MEDLINE | ID: mdl-35238158

ABSTRACT

Photoacoustic microscopic images can assist specialists in disease diagnosis by providing vascular information. However, the size of such data is usually extremely large (ie, gigabytes), and thus, a real-time, efficient compression method can facilitate easy storage and transportation of these images. We have implemented multiple data compression methods in LabVIEW with a high compression ratio and execution times below the repetition rate of the pulsed laser. The qualitative and quantitative results of ex vivo and in vivo imaging with compression showed near-identical images to uncompressed images, with significantly smaller size.


Subject(s)
Data Compression , Algorithms , Data Compression/methods , Microscopy
19.
Biomed Opt Express ; 13(2): 676-693, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35284180

ABSTRACT

Transfontanelle ultrasound imaging (TFUI) is the conventional approach for diagnosing brain injury in neonates. Despite being the first stage imaging modality, TFUI lacks accuracy in determining the injury at an early stage due to degraded sensitivity and specificity. Therefore, a modality like photoacoustic imaging that combines the advantages of both acoustic and optical imaging can overcome the existing TFUI limitations. Even though a variety of transducers have been used in TFUI, it is essential to identify the transducer specification that is optimal for transfontanelle imaging using the photoacoustic technique. In this study, we evaluated the performance of 6 commercially available ultrasound transducer arrays to identify the optimal characteristics for transfontanelle photoacoustic imaging. We focused on commercially available linear and phased array transducer probes with center frequencies ranging from 2.5MHz to 8.5MHz which covers the entire spectrum of the transducer arrays used for brain imaging. The probes were tested on both in vitro and ex vivo brain tissue, and their performance in terms of transducer resolution, size, penetration depth, sensitivity, signal to noise ratio, signal amplification and reconstructed image quality were evaluated. The analysis of selected transducers in these areas allowed us to determine the optimal transducer for transfontanelle imaging, based on vasculature depth and blood density in tissue using ex vivo sheep brain. The outcome of this evaluation identified the two most suitable ultrasound transducer probes for transfontanelle photoacoustic imaging.

20.
J Biophotonics ; 15(6): e202200016, 2022 06.
Article in English | MEDLINE | ID: mdl-35285133

ABSTRACT

One of the key challenges in linear array transducer-based photoacoustic computed tomography is to image structures embedded deep within the biological tissue with limited optical energy. Here, we utilized a manually controlled multi-angle illumination technique to allow the incident photons to interact with the imaging targets for longer periods of time and diffuse further in all directions. We have developed and optimized a compact probe that enables manual changes to the angle of illumination while acquiring photoacoustic signals. The performance has been demonstrated and evaluated by imaging complex blood vessel mimicking phantoms in-vitro and sheep brain samples ex-vivo. For effective image reconstruction from the data acquired by multi-angle illumination method, we have utilized a method based on the extraction of maximum intensity. In both cases, multi-angle illumination has out-performed the conventional fixed angle illumination technique to improve the overall image quality. Specifically, extraction of the imaging targets located at greater axial depths was possible using this multi-angle illumination technique.


Subject(s)
Photoacoustic Techniques , Animals , Brain/diagnostic imaging , Lighting , Phantoms, Imaging , Photoacoustic Techniques/methods , Sheep , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...