Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
2.
Blood ; 2024 05 23.
Article in English | MEDLINE | ID: mdl-38781562

ABSTRACT

Defense-oriented inflammatory reactivity supports survival at younger age, but might contribute to health impairments in modern, aging societies. The IL-1 cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage, but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential (CHIP), and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be utilized to prevent or treat "inflamm-aging" associated HSPC pathologies.

3.
Mol Cancer Ther ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38638035

ABSTRACT

Metastatic colorectal cancer (mCRC) remains a leading cause of cancer-related deaths, with a 5-year survival rate of only 15%. T cell engaging bispecific antibodies (TCBs) represent a class of biopharmaceuticals that redirect cytotoxic T cells towards tumor cells, thereby turning immunologically "cold" tumors "hot." The carcinoembryonic antigen (CEA) is an attractive tumor-associated antigen (TAA) that is overexpressed in over 98% of CRC patients. In this study, we report the comparison of four different TCB formats employing the antibodies F4 (targeting human CEA) and 2C11 (targeting mouse CD3ε). These formats include both antibody fragment- and IgG-based constructs, with either one or two binding specificities of the respective antibodies. The 2+1 arrangement, using an anti-CEA single-chain diabody (scDbCEA) fused to an anti-CD3 single-chain variable fragment (scFvCD3), emerged as the most potent design, showing tumor killing at subnanomolar concentrations across three different CEA+ cell lines. The in vitro activity was three times greater in C57BL/6 mouse colon adenocarcinoma cells (MC38) expressing high levels of CEA compared to those expressing low levels, highlighting the impact of CEA antigen density in this assay. The optimal TCB candidate was tested in two different immunocompetent mouse models of colorectal cancer and showed tumor growth retardation. Ex vivo analysis of tumor infiltrates showed an increase in CD4+ and CD8+ T cells upon TCB treatment. This study suggests that bivalent tumor targeting, monovalent T cell targeting, and a short spatial separation are promising characteristics for CEA targeting TCBs.

4.
Swiss Med Wkly ; 154: 3485, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38579306

ABSTRACT

AIMS OF THE STUDY: Systemic amyloidoses are rare protein-folding diseases with heterogeneous, often nonspecific clinical presentations. To better understand systemic amyloidoses and to apply state-of-the-art diagnostic pathways and treatment, the interdisciplinary Amyloidosis Network was founded in 2013 at University Hospital Zurich. In this respect, a registry was implemented to study the characteristics and life expectancy of patients with amyloidosis within the area covered by the network. Patient data were collected retrospectively for the period 2005-2014 and prospectively from 2015 onwards. METHODS: Patients aged 18 years or older diagnosed with any subtype of systemic amyloidosis were eligible for inclusion if they were treated in one of the four referring centres (Zurich, Chur, St Gallen, Bellinzona). Baseline data were captured at the time of diagnosis. Follow-up data were assessed half-yearly for the first two years, then annually. RESULTS: Between January 2005 and March 2020, 247 patients were screened, and 155 patients with confirmed systemic amyloidosis were included in the present analysis. The most common amyloidosis type was light-chain (49.7%, n = 77), followed by transthyretin amyloidosis (40%, n = 62) and amyloid A amyloidosis (5.2%, n = 8). Most patients (61.9%, n = 96) presented with multiorgan involvement. Nevertheless, single organ involvement was seen in all types of amyloidosis, most commonly in amyloid A amyloidosis (75%, n = 6). The median observation time of the surviving patients was calculated by the reverse Kaplan-Meier method and was 3.29 years (95% confidence interval [CI] 2.33-4.87); it was 4.87 years (95% CI 3.14-7.22) in light-chain amyloidosis patients and 1.85 years (95% CI 1.48-3.66) in transthyretin amyloidosis patients, respectively. The 1-, 3- and 5-year survival rates were 87.0% (95% CI 79.4-95.3%), 68.5% (95% CI 57.4-81.7%) and 66.0% (95% CI 54.6-79.9%) respectively for light-chain amyloidosis patients and 91.2% (95% CI 83.2-99.8%), 77.0% (95% CI 63.4-93.7%) and 50.6% (95% CI 31.8-80.3%) respectively for transthyretin amyloidosis patients. There was no significant difference between the two groups (p = 0.81). CONCLUSION: During registry set-up, a more comprehensive work-up of our patients suffering mainly from light-chain amyloidosis and transthyretin amyloidosis was implemented. Survival rates were remarkably high and similar between light-chain amyloidosis and transthyretin amyloidosis, a finding which was noted in similar historic registries of international centres. However, further studies are needed to depict morbidity and mortality as the amyloidosis landscape is changing rapidly.


Subject(s)
Amyloid Neuropathies, Familial , Amyloidosis , Humans , Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/metabolism , Amyloid Neuropathies, Familial/therapy , Registries , Retrospective Studies , Serum Amyloid A Protein , Switzerland/epidemiology , Adult
5.
EMBO Mol Med ; 16(4): 904-926, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448543

ABSTRACT

Cytokine-based therapeutics have been shown to mediate objective responses in certain tumor entities but suffer from insufficient selectivity, causing limiting toxicity which prevents dose escalation to therapeutically active regimens. The antibody-based delivery of cytokines significantly increases the therapeutic index of the corresponding payload but still suffers from side effects associated with peak concentrations of the product in blood upon intravenous administration. Here we devise a general strategy (named "Intra-Cork") to mask systemic cytokine activity without impacting anti-cancer efficacy. Our technology features the use of antibody-cytokine fusions, capable of selective localization at the neoplastic site, in combination with pathway-selective inhibitors of the cytokine signaling, which rapidly clear from the body. This strategy, exemplified with a tumor-targeted IL12 in combination with a JAK2 inhibitor, allowed to abrogate cytokine-driven toxicity without affecting therapeutic activity in a preclinical model of cancer. This approach is readily applicable in clinical practice.


Subject(s)
Cytokines , Neoplasms , Humans , Neoplasms/drug therapy , Immunotherapy
6.
Blood Cancer J ; 14(1): 56, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538587

ABSTRACT

Randomized controlled trials (RCTs) are the gold standard to establish the benefit-risk ratio of novel drugs. However, the evaluation of mature results often takes many years. We hypothesized that the addition of Bayesian inference methods at interim analysis time points might accelerate and enforce the knowledge that such trials may generate. In order to test that hypothesis, we retrospectively applied a Bayesian approach to the HOVON 132 trial, in which 800 newly diagnosed AML patients aged 18 to 65 years were randomly assigned to a "7 + 3" induction with or without lenalidomide. Five years after the first patient was recruited, the trial was negative for its primary endpoint with no difference in event-free survival (EFS) between experimental and control groups (hazard ratio [HR] 0.99, p = 0.96) in the final conventional analysis. We retrospectively simulated interim analyses after the inclusion of 150, 300, 450, and 600 patients using a Bayesian methodology to detect early lack of efficacy signals. The HR for EFS comparing the lenalidomide arm with the control treatment arm was 1.21 (95% CI 0.81-1.69), 1.05 (95% CI 0.86-1.30), 1.00 (95% CI 0.84-1.19), and 1.02 (95% CI 0.87-1.19) at interim analysis 1, 2, 3 and 4, respectively. Complete remission rates were lower in the lenalidomide arm, and early deaths more frequent. A Bayesian approach identified that the probability of a clinically relevant benefit for EFS (HR < 0.76, as assumed in the statistical analysis plan) was very low at the first interim analysis (1.2%, 0.6%, 0.4%, and 0.1%, respectively). Similar observations were made for low probabilities of any benefit regarding CR. Therefore, Bayesian analysis significantly adds to conventional methods applied for interim analysis and may thereby accelerate the performance and completion of phase III trials.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bayes Theorem , Lenalidomide/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Progression-Free Survival , Proportional Hazards Models , Randomized Controlled Trials as Topic
7.
Br J Haematol ; 204(5): 1908-1912, 2024 May.
Article in English | MEDLINE | ID: mdl-38327109

ABSTRACT

Allogeneic haematopoietic cell transplantation (allo-HCT) recipients exhibit an increased risk of COVID-19, particularly in the early post-transplant phase, due to insufficient vaccine responses. This retrospective study investigated the incidence of SARS-CoV-2 infection in allo-HCT recipients who received tixagevimab/cilgavimab pre-exposure prophylaxis (T/C PrEP) compared to those who did not. Logistic regression, adjusted for sex, age, SARS-CoV-2 vaccination status and immunosuppressive treatment, revealed a significant reduction in the likelihood of SARS-CoV-2 infection risk with T/C PrEP (adjusted odds ratio aOR = 0.26 [0.07, 0.91]). These findings suggest the potential efficacy of monoclonal antibody PrEP in protecting this vulnerable patient population from COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Hematopoietic Stem Cell Transplantation , SARS-CoV-2 , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , COVID-19/prevention & control , Female , Middle Aged , Adult , Retrospective Studies , Antibodies, Monoclonal, Humanized/therapeutic use , Aged , Transplantation, Homologous , Pre-Exposure Prophylaxis/methods , Allografts
8.
EMBO Mol Med ; 16(3): 445-474, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355749

ABSTRACT

TP53-mutant acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS) are characterized by chemotherapy resistance and represent an unmet clinical need. Chimeric antigen receptor (CAR) T-cells might be a promising therapeutic option for TP53-mutant AML/MDS. However, the impact of TP53 deficiency in AML cells on the efficacy of CAR T-cells is unknown. We here show that CAR T-cells engaging TP53-deficient leukemia cells exhibit a prolonged interaction time, upregulate exhaustion markers, and are inefficient to control AML cell outgrowth in vitro and in vivo compared to TP53 wild-type cells. Transcriptional profiling revealed that the mevalonate pathway is upregulated in TP53-deficient AML cells under CAR T-cell attack, while CAR T-cells engaging TP53-deficient AML cells downregulate the Wnt pathway. In vitro rational targeting of either of these pathways rescues AML cell sensitivity to CAR T-cell-mediated killing. We thus demonstrate that TP53 deficiency confers resistance to CAR T-cell therapy and identify the mevalonate pathway as a therapeutic vulnerability of TP53-deficient AML cells engaged by CAR T-cells, and the Wnt pathway as a promising CAR T-cell therapy-enhancing approach for TP53-deficient AML/MDS.


Subject(s)
Leukemia, Myeloid, Acute , Mevalonic Acid , Humans , Mevalonic Acid/metabolism , Wnt Signaling Pathway , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Immunotherapy, Adoptive , T-Lymphocytes , Tumor Suppressor Protein p53/genetics
9.
J Infect Dis ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227786

ABSTRACT

BACKGROUND: Factors influencing susceptibility to SARS-CoV-2 remain to be resolved. Using data of the Swiss HIV Cohort Study (SHCS) on 6,270 people with HIV (PWH) and serologic assessment for SARS-CoV-2 and circulating-human-coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS: We analyzed SARS-CoV-2 PCR-tests, COVID-19 related hospitalizations, and deaths reported to the SHCS between January 1, 2020 and December 31, 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in pre-pandemic (2019) and pandemic (2020) bio-banked plasma and compared to HIV-negative individuals. We applied logistic regression, conditional logistic regression, and Bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and Ab responses to SARS-CoV-2 in PWH. RESULTS: No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High pre-pandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses upon infection. We observed a robust protective effect of smoking on SARS-CoV-2-infection risk (aOR= 0.46 [0.38,0.56], p=2.6*10-14), which occurred even in previous smokers, and was highest for heavy smokers. CONCLUSIONS: Our findings of two independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2.

10.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091952

ABSTRACT

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Subject(s)
Histiocytosis, Langerhans-Cell , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/pathology , Histiocytosis, Langerhans-Cell/therapy , Brain/metabolism , Myeloid Cells/metabolism , Cell Differentiation
12.
bioRxiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37873371

ABSTRACT

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E + myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a + macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND.

13.
J Exp Med ; 220(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37819374

ABSTRACT

Hematopoietic stem and progenitor cell-derived neoplasia is challenging to target by cell surface-directed immunotherapy due to lack of tumor cell-specific antigen identification. Marone et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20231235) provide a solution by target-epitope resistance editing in healthy hematopoietic stem cells.


Subject(s)
Hematopoietic Stem Cells , Immunotherapy , Epitopes , Cell Membrane
16.
Mol Ther Oncolytics ; 30: 56-71, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37583386

ABSTRACT

Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.

17.
Bone Marrow Transplant ; 58(10): 1121-1129, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37479752

ABSTRACT

Hematopoietic cell transplantation from haploidentical donors (haploHCT) has facilitated treatment of AML and MDS by increasing donor availability and became more feasible since the introduction of post-transplant cyclophosphamide (ptCY). In our single-center retrospective analysis including 213 patients with AML or MDS, we compare the outcome of haploHCT (n = 40) with ptCY with HCT from HLA-identical MRD (n = 105) and MUD (n = 68). At 2 years after transplantation, overall survival (OS) after haploHCT was not significantly different (0.59; 95% confidence interval 0.44-0.79) compared to MRD (0.77; 0.67-0.88) and MUD transplantation (0.72; 0.64-0.82, p = 0.51). While progression-free survival (PFS) was also not significantly different (haploHCT: 0.60; 0.46-0.78, MRD: 0.55; 0.44-0.69, MUD: 0.64; 0.55-0.74, p = 0.64), non-relapse mortality (NRM) was significantly higher after haploHCT (0.18; 0.08-0.33) vs. MRD (0.029; 0.005-0.09) and MUD (0.06; 0.02-0.12, p < 0.05). Higher NRM was mainly caused by a higher rate of fatal infections, while deaths related to GvHD or other non-relapse reasons were rare in all groups. As most fatal infections occurred early and were bacterial related, one potential risk factor among many was identified in the significantly longer time to neutrophil engraftment after haploHCT with a median of 16 days (interquartile range; 14.8-20.0) vs. 12 days (10.0-13.0) for MRD and 11 days (10.0-13.0) for MUD (p = 0.01).

18.
Neuro Oncol ; 25(11): 2001-2014, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37335916

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has proven to be successful against hematological malignancies. However, exploiting CAR T cells to treat solid tumors is more challenging for various reasons including the lack of suitable target antigens. Here, we identify the transmembrane protein CD317 as a novel target antigen for CAR T cell therapy against glioblastoma, one of the most aggressive solid tumors. METHODS: CD317-targeting CAR T cells were generated by lentivirally transducing human T cells from healthy donors. The anti-glioma activity of CD317-CAR T cells toward various glioma cells was assessed in vitro in cell lysis assays. Subsequently, we determined the efficacy of CD317-CAR T cells to control tumor growth in vivo in clinically relevant mouse glioma models. RESULTS: We generated CD317-specific CAR T cells and demonstrate strong anti-tumor activity against several glioma cell lines as well as primary patient-derived cells with varying CD317 expression levels in vitro. A CRISPR/Cas9-mediated knockout of CD317 protected glioma cells from CAR T cell lysis, demonstrating the target specificity of the approach. Silencing of CD317 expression in T cells by RNA interference reduced fratricide of engineered T cells and further improved their effector function. Using orthotopic glioma mouse models, we demonstrate the antigen-specific anti-tumor activity of CD317-CAR T cells, which resulted in prolonged survival and cure of a fraction of CAR T cell-treated animals. CONCLUSIONS: These data reveal a promising role of CD317-CAR T cell therapy against glioblastoma, which warrants further evaluation to translate this immunotherapeutic strategy into clinical neuro-oncology.


Subject(s)
Glioblastoma , Glioma , Receptors, Chimeric Antigen , Mice , Animals , Humans , Receptors, Chimeric Antigen/genetics , Glioblastoma/pathology , T-Lymphocytes , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Glioma/pathology , Xenograft Model Antitumor Assays
19.
Blood Cancer J ; 13(1): 93, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336890

ABSTRACT

Treatment choice according to the individual conditions remains challenging, particularly in older patients with acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS). The impact of performance status, comorbidities, and physical functioning on survival is not well defined for patients treated with hypomethylating agents. Here we describe the impact of performance status (14% ECOG performance status 2), comorbidity (40% HCT-comorbidity index ≥ 2), and physical functioning (41% short physical performance battery < 9 and 17% ADL index < 6) on overall survival (OS) in 115 older patients (age ≥ 66 years) treated on a clinical trial with a 10-day decitabine schedule. None of the patient-related variables showed a significant association with OS. Multivariable analysis revealed that age > 76 years was significantly associated with reduced OS (HR 1.58; p = 0.043) and female sex was associated with superior OS (HR 0.62; p = 0.06). We further compared the genetic profiles of these subgroups. This revealed comparable mutational profiles in patients younger and older than 76 years, but, interestingly, revealed significantly more prevalent mutated ASXL1, STAG2, and U2AF1 in male compared to female patients. In this cohort of older patients treated with decitabine age and sex, but not comorbidities, physical functioning or cytogenetic risk were associated with overall survival.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Male , Female , Aged , Decitabine/therapeutic use , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Treatment Outcome
20.
MAbs ; 15(1): 2220839, 2023.
Article in English | MEDLINE | ID: mdl-37288872

ABSTRACT

Antibody-based therapeutics represent an important class of biopharmaceuticals in cancer immunotherapy. CD3 bispecific T-cell engagers activate cytotoxic T-cells and have shown remarkable clinical outcomes against several hematological malignancies. The absence of a costimulatory signal through CD28 typically leads to insufficient T-cell activation and early exhaustion. The combination of CD3 and CD28 targeting products offers an attractive strategy to boost T-cell activity. However, the development of CD28-targeting therapies ceased after TeGenero's Phase 1 trial in 2006 evaluating a superagonistic anti-CD28 antibody (TGN1412) resulted in severe life-threatening side effects. Here, we describe the generation of a novel fully human anti-CD28 antibody termed "E1P2" using phage display technology. E1P2 bound to human and mouse CD28 as shown by flow cytometry on primary human and mouse T-cells. Epitope mapping revealed a conformational binding epitope for E1P2 close to the apex of CD28, similar to its natural ligand and unlike the lateral epitope of TGN1412. E1P2, in contrast to TGN1412, showed no signs of in vitro superagonistic properties on human peripheral blood mononuclear cells (PBMCs) using different healthy donors. Importantly, an in vivo safety study in humanized NSG mice using E1P2, in direct comparison and contrast to TGN1412, did not cause cytokine release syndrome. In an in vitro activity assay using human PBMCs, the combination of E1P2 with CD3 bispecific antibodies enhanced tumor cell killing and T-cell proliferation. Collectively, these data demonstrate the therapeutic potential of E1P2 to improve the activity of T-cell receptor/CD3 activating constructs in targeted immunotherapeutic approaches against cancer or infectious diseases.


Subject(s)
Leukocytes, Mononuclear , T-Lymphocytes , Humans , Mice , Animals , Leukocytes, Mononuclear/metabolism , CD28 Antigens , Receptors, Antigen, T-Cell/metabolism , Epitopes/metabolism , Lymphocyte Activation , CD3 Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...