Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1245545, 2024.
Article in English | MEDLINE | ID: mdl-38872892

ABSTRACT

The resistance of Arabidopsis thaliana to clubroot, a major disease of Brassicaceae caused by the obligate protist Plasmodiophora brassicae, is controlled in part by epigenetic factors. The detection of some of these epigenetic quantitative trait loci (QTLepi) has been shown to depend on experimental conditions. The aim of the present study was to assess whether and how temperature and/or soil water availability influenced both the detection and the extent of the effect of response QTLepi. The epigenetic recombinant inbred line (epiRIL) population, derived from the cross between ddm1-2 and Col-0 (partially resistant and susceptible to clubroot, respectively), was phenotyped for response to P. brassicae under four abiotic conditions including standard conditions, a 5°C temperature increase, drought, and flooding. The abiotic constraints tested had a significant impact on both the leaf growth of the epiRIL population and the outcome of the epiRIL-pathogen interaction. Linkage analysis led to the detection of a total of 31 QTLepi, 18 of which were specific to one abiotic condition and 13 common to at least two environments. EpiRIL showed significant plasticity under epigenetic control, which appeared to be specific to the traits evaluated and to the abiotic conditions. These results highlight that the environment can affect the epigenetic architecture of plant growth and immune responses and advance our understanding of the epigenetic factors underlying plasticity in response to climate change.

2.
Physiol Plant ; 176(1): e14130, 2024.
Article in English | MEDLINE | ID: mdl-38842416

ABSTRACT

In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.


Subject(s)
Brassica napus , Droughts , Gene Expression Regulation, Plant , Seeds , Stress, Physiological , Brassica napus/genetics , Brassica napus/physiology , Seeds/genetics , Seeds/growth & development , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plasmodiophorida/physiology , Transcriptome/genetics
3.
Plant Commun ; 5(5): 100824, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38268192

ABSTRACT

Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassicaceae. Using a combination of quantitative trait locus (QTL) fine mapping, CRISPR-Cas9 validation, and extensive analyses of DNA sequence and methylation patterns, we revealed that the two adjacent neighboring NLR (nucleotide-binding and leucine-rich repeat) genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P. brassicae in Arabidopsis and that they are epigenetically regulated. The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited. Variations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and correlate negatively with variations in expression of the two genes. Our study demonstrates that natural, stable, and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.


Subject(s)
Arabidopsis , Disease Resistance , Plant Diseases , Arabidopsis/genetics , Arabidopsis/immunology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/parasitology , Disease Resistance/genetics , NLR Proteins/genetics , NLR Proteins/metabolism , DNA Methylation , Plasmodiophorida/physiology , Quantitative Trait Loci/genetics , Arabidopsis Proteins/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genes, Plant , Alleles
4.
Physiol Plant ; 175(4): e13975, 2023.
Article in English | MEDLINE | ID: mdl-37616010

ABSTRACT

The identification of several fructan exohydrolases (FEHs, EC 3.2.1.80) in non-fructan accumulating plants raised the question of their roles. FEHs may be defense-related proteins involved in the interactions with fructan-accumulating microorganisms. Since known defense-related proteins are upregulated by defense-related phytohormones, we tested the hypothesis that FEHs of non-fructan accumulating plants are upregulated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) using the model plant Arabidopsis thaliana and the agronomically relevant and genetically related species Brassica napus. By sequence homologies with the two known FEH genes of A. thaliana, At6-FEH, and At6&1-FEH, the genes coding for the putative B. napus FEHs, Bn6-FEH and Bn6&1-FEH, were identified. Plants were treated at root level with SA, methyl jasmonate (MeJA) or 1-aminocyclopropane-1-carboxylic acid (ACC). The transcript levels of defense-related and FEH genes were measured after treatments. MeJA and ACC did not upregulate FEHs, while HEL (HEVEIN-LIKE PREPROTEIN) expression was enhanced by both phytohormones. In both species, the expression of AOS, encoding a JA biosynthesis enzyme, was enhanced by MeJA and that of the defensine PDF1.2 and the ET signaling transcription factor ERF1/2 by ACC. In contrast, SA not only increased the expression of genes encoding antimicrobial proteins (PR1 and HEL) and the defense-related transcription factor WRKY70 but also that of FEH genes, in particular 6&1-FEH genes. This result supports the putative role of FEHs as defense-related proteins. Genotypic variability of SA-mediated FEH regulation (transcript level and activities) was observed among five varieties of B. napus, suggesting different susceptibilities toward fructan-accumulating pathogens.


Subject(s)
Arabidopsis , Glycoside Hydrolases , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Amino Acid Sequence , Fructans/metabolism , Salicylic Acid/pharmacology , Plant Growth Regulators/pharmacology , Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Cyclopentanes/pharmacology , Oxylipins/pharmacology
5.
J Agric Food Chem ; 70(16): 5245-5261, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35420430

ABSTRACT

Glucosinolate (GLS) and phenolic contents in Brassicaceae contribute to biotic and abiotic stress responses. Breeding crop accessions harboring agroecologically relevant metabolic profiles require a characterization of the chemical diversity in Brassica germplasm. This work investigates the diversity of specialized metabolites in 281 accessions of B. napus. First, an LC-HRMS2-based approach allowed the annotation of 32 phenolics and 36 GLSs, revealing 13 branched and linear alkyl-GLSs and 4 isomers of hydroxyphenylalkyl-GLSs, many of which have been rarely reported in Brassica. Then, quantitative UPLC-UV-MS-based profiling was performed in leaves and roots for the whole panel. This revealed striking variations in the content of 1-methylpropyl-GLS (glucocochlearin) and a large variation of tetra- and penta-glucosyl kaempferol derivatives among accessions. It also highlighted two main chemotypes related to sinapoyl-O-hexoside and kaempferol-O-trihexoside contents. By offering an unprecedented overview of the phytochemical diversity in B. napus, this work provides a useful resource for chemical ecology and breeding.


Subject(s)
Brassica napus , Brassica , Brassica/metabolism , Brassica napus/metabolism , Breeding , Glucosinolates/metabolism , Kaempferols , Phenols
6.
Front Plant Sci ; 13: 790563, 2022.
Article in English | MEDLINE | ID: mdl-35222461

ABSTRACT

Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae. Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae. Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2- and NR-encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens.

7.
Data Brief ; 38: 107392, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34611536

ABSTRACT

Oilseed rape (Brassica napus L.) is the third largest oil crop worldwide. Like other crops, oilseed rape faces unfavorable environmental conditions resulting from multiple and combined actions of abiotic and biotic constraints that occur throughout the growing season. In particular drought severely reduces seed yield but also impacts seed quality in oilseed rape. In addition, clubroot disease, caused by the pathogen Plasmodiophora brassicae, limits the yield of the oilseed rape crops grown in infected areas. Clubroot induces swellings or galls on the roots that decrease the flow of water and nutrients within the plant. Furthermore, combinations of different stresses lead to complex plant responses that can not be predicted by the simple addition of individual stress responses. Indeed, an abiotic constraint can either reduce or stimulate the plant response to a pathogen or pest. Transcriptome datasets from different conditions are key resources to improve our knowledge of environmental stress-resistance mechanisms in plant organs. Here, we describe a RNA-seq dataset consisting of 72 samples of immature B. napus seeds from plants grown either under drought, infected with P. brassicae, or a combination of both stresses. A total of 67.6 Gb of transcriptome paired-end reads were filtered, mapped onto the B. napus reference genome Darmor-bzh and used for identification of differentially expressed genes and gene ontology enrichment. The raw reads are available under accession PRJNA738318 at NCBI Sequence Read Archive (SRA) repository. The dataset is a resource for the scientific community exploring seed plasticity.

8.
Front Microbiol ; 12: 701067, 2021.
Article in English | MEDLINE | ID: mdl-34305867

ABSTRACT

Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.

9.
Data Brief ; 37: 107247, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34277900

ABSTRACT

Faced with the challenges of adapting agriculture to climate change, seed production should have increased resilience to abiotic stress factors and the expected proliferation of pathogens. This concerns both the nutritional quality and seed vigor, two crucial factors in seedling establishment and yield. Both qualities are acquired during seed development, but how environment influences the genetic and physiological determinisms of these qualities remains to be elucidated. With a world production of 71 Mt of seeds per year, oilseed rape (Brassica napus) is the third largest oleaginous crop. But its productivity must cope with several abiotic stresses, among which drought is one of the main constraints in current and future climate scenarios. In addition, clubroot disease, caused by the pathogen Plasmodiophora brassicae, leads to severe yield losses for the Brassica crops worldwide. Clubroot provokes the formation of galls on the infected roots that can restrict the flow of water and nutrients within the plant throughout the growth cycle. In order to get new insights into the impact of single or combined constraints on seed qualities, metabolic profiling assays were run for a collection of 330 seed samples (including developing, mature and imbibed seeds) harvested from plants of two B. napus cultivars ("Express" and "Montego") that were grown under either drought conditions, the presence of P. brassicae, or a combination of both stresses. Metabolites were identified and quantified by UPLC or GC. In addition, monitoring germination traits was conducted for 60 mature seed lots under in vitro conditions using an automated phenotyping platform. The present dataset contains the raw contents for 42 metabolites (nmol.mg-1 of seed dry weight) filtered and analyzed with statistical tests as well as germination speed and percentages. This dataset is available under accession at Data INRAE. These data will contribute to a better understanding of the crosstalk between the plant responses to water deprivation and/or pathogen attack and how it compromises seed quality. A better understanding of the molecular and physiological responses of the seed to (a)biotic stress on a molecular and physiological will be a first step to meet scientific and technological challenges of adapting seeds to their environment.

10.
Microb Biotechnol ; 13(5): 1648-1672, 2020 09.
Article in English | MEDLINE | ID: mdl-32686326

ABSTRACT

The contribution of surrounding plant microbiota to disease development has led to the 'pathobiome' concept, which represents the interaction between the pathogen, the host plant and the associated biotic microbial community, resulting or not in plant disease. The aim herein is to understand how the soil microbial environment may influence the functions of a pathogen and its pathogenesis, and the molecular response of the plant to the infection, with a dual-RNAseq transcriptomics approach. We address this question using Brassica napus and Plasmodiophora brassicae, the pathogen responsible for clubroot. A time-course experiment was conducted to study interactions between P. brassicae, two B. napus genotypes and three soils harbouring high, medium or low microbiota diversities and levels of richness. The soil microbial diversity levels had an impact on disease development (symptom levels and pathogen quantity). The P. brassicae and B. napus transcriptional patterns were modulated by these microbial diversities, these modulations being dependent on the host genotype plant and the kinetic time. The functional analysis of gene expressions allowed the identification of pathogen and plant host functions potentially involved in the change of plant disease level, such as pathogenicity-related genes (NUDIX effector) in P. brassicae and plant defence-related genes (glucosinolate metabolism) in B. napus.


Subject(s)
Brassica napus , Microbiota , Plasmodiophorida , Plant Diseases , Plasmodiophorida/genetics , Soil , Transcriptome
11.
Front Plant Sci ; 11: 604527, 2020.
Article in English | MEDLINE | ID: mdl-33391316

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae Woronin, is one of the most important diseases of oilseed rape (Brassica napus L.). The rapid erosion of monogenic resistance in clubroot-resistant (CR) varieties underscores the need to diversify resistance sources controlling disease severity and traits related to pathogen fitness, such as resting spore production. The genetic control of disease index (DI) and resting spores per plant (RSP) was evaluated in a doubled haploid (DH) population consisting of 114 winter oilseed rape lines, obtained from the cross 'Aviso' × 'Montego,' inoculated with P. brassicae isolate "eH." Linkage analysis allowed the identification of three quantitative trait loci (QTLs) controlling DI (PbBn_di_A02, PbBn_di_A04, and PbBn_di_C03). A significant decrease in DI was observed when combining effects of the three resistance alleles at these QTLs. Only one QTL, PbBn_rsp_C03, was found to control RSP, reducing resting spore production by 40%. PbBn_rsp_C03 partially overlapped with PbBn_di_C03 in a nucleotide-binding leucine-rich repeat (NLR) gene-containing region. Consideration of both DI and RSP in breeding for clubroot resistance is recommended for the long-term management of this disease.

12.
J Exp Bot ; 70(19): 5375-5390, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31145785

ABSTRACT

Plant disease resistance is often under quantitative genetic control. Thus, in a given interaction, plant cellular responses to infection are influenced by resistance or susceptibility alleles at different loci. In this study, a genetic linkage analysis was used to address the complexity of the metabolic responses of Brassica napus roots to infection by Plasmodiophora brassicae. Metabolome profiling and pathogen quantification in a segregating progeny allowed a comparative mapping of quantitative trait loci (QTLs) involved in resistance and in metabolic adjustments. Distinct metabolic modules were associated with each resistance QTL, suggesting the involvement of different underlying cellular mechanisms. This approach highlighted the possible role of gluconasturtiin and two unknown metabolites in the resistance conferred by two QTLs on chromosomes C03 and C09, respectively. Only two susceptibility biomarkers (glycine and glutathione) were simultaneously linked to the three main resistance QTLs, suggesting the central role of these compounds in the interaction. By contrast, several genotype-specific metabolic responses to infection were genetically unconnected to resistance or susceptibility. Likewise, variations of root sugar profiles, which might have influenced pathogen nutrition, were not found to be related to resistance QTLs. This work illustrates how genetic metabolomics can help to understand plant stress responses and their possible links with disease.


Subject(s)
Brassica napus/genetics , Metabolome , Plant Diseases/genetics , Plasmodiophorida/physiology , Quantitative Trait Loci , Brassica napus/microbiology , Disease Resistance/genetics , Metabolomics , Plant Diseases/microbiology
13.
PLoS One ; 14(2): e0204195, 2019.
Article in English | MEDLINE | ID: mdl-30802246

ABSTRACT

The temporal dynamics of rhizosphere and root microbiota composition was compared between healthy and infected Chinese cabbage plants by the pathogen Plasmodiophora brassicae. When inoculated with P. brassicae, disease was measured at five sampling dates from early root hair infection to late gall development. The first symptoms of clubroot disease appeared 14 days after inoculation (DAI) and increased drastically between 14 and 35 DAI. The structure of microbial communities associated to rhizosphere soil and root from healthy and inoculated plants was characterized through high-throughput DNA sequencing of bacterial (16S) and fungal (18S) molecular markers and compared at each sampling date. In healthy plants, Proteobacteria and Bacteroidetes bacterial phyla dominated the rhizosphere and root microbiota of Chinese cabbage. Rhizosphere bacterial communities contained higher abundances of Actinobacteria and Firmicutes compared to the roots. Moreover, a drastic shift of fungal communities of healthy plants occurred between the two last sampling dates, especially in plant roots, where most of Ascomycota fungi dominated until they were replaced by a fungus assigned to the Chytridiomycota phylum. Parasitic invasion by P. brassicae disrupted the rhizosphere and root-associated community assembly at a late step during the root secondary cortical infection stage of clubroot disease. At this stage, Flavisolibacter and Streptomyces in the rhizosphere, and Bacillus in the roots, were drastically less abundant upon parasite invasion. Rhizosphere of plants colonized by P. brassicae was significantly more invaded by the Chytridiomycota fungus, which could reflect a mutualistic relationship in this compartment between these two microorganisms.


Subject(s)
Brassica rapa/microbiology , Brassica rapa/parasitology , Microbiota , Plant Diseases/microbiology , Plasmodiophorida , Bacteria/genetics , Biodiversity , Disease Progression , Fungi/genetics , Plant Diseases/parasitology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Soil Microbiology , Time Factors
14.
New Phytol ; 222(1): 468-479, 2019 04.
Article in English | MEDLINE | ID: mdl-30393890

ABSTRACT

Quantitative disease resistance, often influenced by environmental factors, is thought to be the result of DNA sequence variants segregating at multiple loci. However, heritable differences in DNA methylation, so-called transgenerational epigenetic variants, also could contribute to quantitative traits. Here, we tested this possibility using the well-characterized quantitative resistance of Arabidopsis to clubroot, a Brassica major disease caused by Plasmodiophora brassicae. For that, we used the epigenetic recombinant inbred lines (epiRIL) derived from the cross ddm1-2 × Col-0, which show extensive epigenetic variation but limited DNA sequence variation. Quantitative loci under epigenetic control (QTLepi ) mapping was carried out on 123 epiRIL infected with P. brassicae and using various disease-related traits. EpiRIL displayed a wide range of continuous phenotypic responses. Twenty QTLepi were detected across the five chromosomes, with a bona fide epigenetic origin for 16 of them. The effect of five QTLepi was dependent on temperature conditions. Six QTLepi co-localized with previously identified clubroot resistance genes and QTL in Arabidopsis. Co-localization of clubroot resistance QTLepi with previously detected DNA-based QTL reveals a complex model in which a combination of allelic and epiallelic variations interacts with the environment to lead to variation in clubroot quantitative resistance.


Subject(s)
Arabidopsis/genetics , Arabidopsis/immunology , Disease Resistance/genetics , Epigenesis, Genetic , Genetic Variation , Plant Diseases/genetics , Plant Diseases/microbiology , Arabidopsis/growth & development , Arabidopsis/microbiology , Base Sequence , DNA Methylation/genetics , Inheritance Patterns/genetics , Mutation/genetics , Phenotype , Plasmodiophorida/physiology , Quantitative Trait Loci/genetics , Temperature
15.
Genomics ; 111(6): 1629-1640, 2019 12.
Article in English | MEDLINE | ID: mdl-30447277

ABSTRACT

Plasmodiophora brassicae is an obligate biotrophic pathogenic protist responsible for clubroot, a root gall disease of Brassicaceae species. In addition to the reference genome of the P. brassicae European e3 isolate and the draft genomes of Canadian or Chinese isolates, we present the genome of eH, a second European isolate. Refinement of the annotation of the eH genome led to the identification of the mitochondrial genome sequence, which was found to be bigger than that of Spongospora subterranea, another plant parasitic Plasmodiophorid phylogenetically related to P. brassicae. New pathways were also predicted, such as those for the synthesis of spermidine, a polyamine up-regulated in clubbed regions of roots. A P. brassicae pathway genome database was created to facilitate the functional study of metabolic pathways in transcriptomics approaches. These available tools can help in our understanding of the regulation of P. brassicae metabolism during infection and in response to diverse constraints.


Subject(s)
Databases, Genetic , Genome, Mitochondrial , Genome, Protozoan , Metabolic Networks and Pathways/physiology , Phylogeny , Plasmodiophorida , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , Plasmodiophorida/genetics , Plasmodiophorida/metabolism
16.
Nat Plants ; 4(11): 879-887, 2018 11.
Article in English | MEDLINE | ID: mdl-30390080

ABSTRACT

Plant genomes are often characterized by a high level of repetitiveness and polyploid nature. Consequently, creating genome assemblies for plant genomes is challenging. The introduction of short-read technologies 10 years ago substantially increased the number of available plant genomes. Generally, these assemblies are incomplete and fragmented, and only a few are at the chromosome scale. Recently, Pacific Biosciences and Oxford Nanopore sequencing technologies were commercialized that can sequence long DNA fragments (kilobases to megabase) and, using efficient algorithms, provide high-quality assemblies in terms of contiguity and completeness of repetitive regions1-4. However, even though genome assemblies based on long reads exhibit high contig N50s (>1 Mb), these methods are still insufficient to decipher genome organization at the chromosome level. Here, we describe a strategy based on long reads (MinION or PromethION sequencers) and optical maps (Saphyr system) that can produce chromosome-level assemblies and demonstrate applicability by generating high-quality genome sequences for two new dicotyledon morphotypes, Brassica rapa Z1 (yellow sarson) and Brassica oleracea HDEM (broccoli), and one new monocotyledon, Musa schizocarpa (banana). All three assemblies show contig N50s of >5 Mb and contain scaffolds that represent entire chromosomes or chromosome arms.


Subject(s)
Brassica rapa/genetics , Brassica/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genome, Plant/genetics , Nanopores , High-Throughput Nucleotide Sequencing/methods , Optics and Photonics/methods , Repetitive Sequences, Nucleic Acid/genetics
17.
Theor Appl Genet ; 131(8): 1627-1643, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29728747

ABSTRACT

KEY MESSAGE: A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping. Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L. maculans, is highly polygenic and is greatly influenced by the environment. In this study, we took advantage of multi-year data available on three segregating populations derived from the resistant cv Darmor and multi-year data available on oilseed rape panels to obtain a wide overview of the genomic regions involved in quantitative resistance to this pathogen in oilseed rape. Sixteen QTL regions were common to at least two biparental populations, of which nine were the same as previously detected regions in a multi-parental design derived from different resistant parents. Eight regions were significantly associated with quantitative resistance, of which five on A06, A08, A09, C01 and C04 were located within QTL support intervals. Homoeologous Brassica napus genes were found in eight homoeologous QTL regions, which corresponded to 657 pairs of homoeologous genes. Potential candidate genes underlying this quantitative resistance were identified. Genomic predictions and breeding are also discussed, taking into account the highly polygenic nature of this resistance.


Subject(s)
Brassica napus/genetics , Disease Resistance/genetics , Genetic Linkage , Plant Diseases/genetics , Quantitative Trait Loci , Ascomycota , Brassica napus/microbiology , Chromosome Mapping , Genetic Association Studies , Plant Diseases/microbiology
18.
Front Plant Sci ; 8: 2195, 2017.
Article in English | MEDLINE | ID: mdl-29354146

ABSTRACT

Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.

19.
BMC Plant Biol ; 16(1): 251, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27835985

ABSTRACT

BACKGROUND: The induction of alcohol fermentation in roots is a plant adaptive response to flooding stress and oxygen deprivation. Available transcriptomic data suggest that fermentation-related genes are also frequently induced in roots infected with gall forming pathogens, but the biological significance of this induction is unclear. In this study, we addressed the role of hypoxia responses in Arabidopsis roots during infection by the clubroot agent Plasmodiophora brassicae. RESULTS: The hypoxia-related gene markers PYRUVATE DECARBOXYLASE 1 (PDC1), PYRUVATE DECARBOXYLASE 2 (PDC2) and ALCOHOL DEHYDROGENASE 1 (ADH1) were induced during secondary infection by two isolates of P. brassicae, eH and e2. PDC2 was highly induced as soon as 7 days post inoculation (dpi), i.e., before the development of gall symptoms, and GUS staining revealed that ADH1 induction was localised in infected cortical cells of root galls at 21 dpi. Clubroot symptoms were significantly milder in the pdc1 and pdc2 mutants compared with Col-0, but a null T-DNA insertional mutation of ADH1 did not affect clubroot susceptibility. The Arg/N-end rule pathway of ubiquitin-mediated proteolysis controls oxygen sensing in plants. Mutants of components of this pathway, ate1 ate2 and prt6, that both exhibit constitutive hypoxia responses, showed enhanced clubroot symptoms. In contrast, gall development was reduced in quintuple and sextuple mutants where the activity of all oxygen-sensing Group VII Ethylene Response Factor transcription factors (ERFVIIs) is absent (erfVII and prt6 erfVII). CONCLUSIONS: Our data demonstrate that the induction of PDC1 and PDC2 during the secondary infection of roots by P. brassicae contributes positively to clubroot development, and that this is controlled by oxygen-sensing through ERFVIIs. The absence of any major role of ADH1 in symptom development may also suggest that PDC activity could contribute to the formation of galls through the activation of a PDH bypass.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/parasitology , Plasmodiophorida/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/parasitology
20.
BMC Genomics ; 17: 124, 2016 Feb 20.
Article in English | MEDLINE | ID: mdl-26897486

ABSTRACT

BACKGROUND: Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. METHODS: A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. RESULTS: GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions. CONCLUSION: This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of partial resistance to A. euteiches in pea breeding.


Subject(s)
Aphanomyces , Chromosome Mapping , Disease Resistance/genetics , Pisum sativum/genetics , Plant Diseases/genetics , Alleles , Confidence Intervals , Genetic Association Studies , Genetic Markers , Genotype , Haplotypes , Linkage Disequilibrium , Models, Genetic , Pisum sativum/microbiology , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...