Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(23): 10731-10738, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37970788

ABSTRACT

Fatigue-induced failure resulting from repetitive stress-strain cycles is a critical concern in the development of robust and durable nanoelectromechanical devices founded on 2D semiconductors. Defects, such as vacancies and grain boundaries, inherent in scalable materials can act as stress concentrators and accelerate fatigue fracture. Here, we investigate MoS2 with controlled atomic vacancies, to elucidate its mechanical reliability and fatigue response as a function of atomic defect density. High-quality MoS2 demonstrates an exceptional fatigue response, enduring 109 cycles at 80% of its breaking strength (13.5 GPa), surpassing the fatigue resistance of steel and approaching that of graphene. The introduction of atomic defect densities akin to those generated during scalable synthesis processes (∼1012 cm-2) reduces the fatigue strength to half the breaking strength. Our findings also point toward a sudden defect reconfiguration prior to global failure as the primary fatigue mechanism, offering valuable insights into structure-property relationships.

2.
ACS Appl Mater Interfaces ; 15(28): 33514-33524, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37406352

ABSTRACT

Tuning the electrocatalytic properties of MoS2 layers can be achieved through different paths, such as reducing their thickness, creating edges in the MoS2 flakes, and introducing S-vacancies. We combine these three approaches by growing MoS2 electrodes by using a special salt-assisted chemical vapor deposition (CVD) method. This procedure allows the growth of ultrathin MoS2 nanocrystals (1-3 layers thick and a few nanometers wide), as evidenced by atomic force microscopy and scanning tunneling microscopy. This morphology of the MoS2 layers at the nanoscale induces some specific features in the Raman and photoluminescence spectra compared to exfoliated or microcrystalline MoS2 layers. Moreover, the S-vacancy content in the layers can be tuned during CVD growth by using Ar/H2 mixtures as a carrier gas. Detailed optical microtransmittance and microreflectance spectroscopies, micro-Raman, and X-ray photoelectron spectroscopy measurements with sub-millimeter spatial resolution show that the obtained samples present an excellent homogeneity over areas in the cm2 range. The electrochemical and photoelectrochemical properties of these MoS2 layers were investigated using electrodes with relatively large areas (0.8 cm2). The prepared MoS2 cathodes show outstanding Faradaic efficiencies as well as long-term stability in acidic solutions. In addition, we demonstrate that there is an optimal number of S-vacancies to improve the electrochemical and photoelectrochemical performances of MoS2.

3.
ACS Nano ; 15(1): 1210-1216, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33398991

ABSTRACT

In two-dimensional crystals, fractures propagate easily, thus restricting their mechanical reliability. This work demonstrates that controlled defect creation constitutes an effective approach to avoid catastrophic failure in MoS2 monolayers. A systematic study of fracture mechanics in MoS2 monolayers as a function of the density of atomic vacancies, created by ion irradiation, is reported. Pristine and irradiated materials were studied by atomic force microscopy, high-resolution scanning transmission electron microscopy, and Raman spectroscopy. By inducing ruptures through nanoindentations, we determine the strength and length of the propagated cracks within MoS2 atom-thick membranes as a function of the density and type of the atomic vacancies. We find that a 0.15% atomic vacancy induces a decrease of 40% in strength with respect to that of pristine samples. In contrast, while tear holes in pristine 2D membranes span several microns, they are restricted to a few nanometers in the presence of atomic and nanometer-sized vacancies, thus increasing the material's fracture toughness.

4.
ACS Appl Mater Interfaces ; 12(33): 37750-37756, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32705868

ABSTRACT

Graphene is a very attractive material for nanomechanical devices and membrane applications. Graphene blisters based on silicon oxide microcavities are a simple but relevant example of nanoactuators. A drawback of this experimental setup is that gas leakage through the graphene-SiO2 interface contributes significantly to the total leak rate. Here, we study the diffusion of air from pressurized graphene drumheads on SiO2 microcavities and propose a straightforward method to improve the already strong adhesion between graphene and the underlying SiO2 substrate, resulting in reduced leak rates. This is carried out by applying controlled and localized ultrahigh pressure (>10 GPa) with an atomic force microscopy diamond tip. With this procedure, we are able to significantly approach the graphene layer to the SiO2 surface around the drumheads, thus enhancing the interaction between them, allowing us to better seal the graphene-SiO2 interface, which is reflected in up to ∼ 4 times lower leakage rates. Our work opens an easy way to improve the performance of graphene as a gas membrane on a technological relevant substrate such as SiO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...