Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 301(3): 424-433, 2018 03.
Article in English | MEDLINE | ID: mdl-29418116

ABSTRACT

Lizards are an interesting group to study how habitat use impacts the morphology of the forelimb because they occupy a great diversity of ecological niches. In this study, we specifically investigated whether habitat use impacts the morphology of the forelimb flexor muscles in lizards. To do so, we performed dissections and quantified the physiological cross sectional area (PCSA), the fiber length, and the mass of four flexor muscles in 21 different species of lizards. Our results show that only the PCSA of the m. flexor carpi radialis is different among lizards with different ecologies (arboreal versus non-arboreal). This difference disappeared, however, when taking phylogeny into account. Arboreal species have a higher m. flexor carpi radialis cross sectional area likely allowing them to flex the wrist more forcefully which may allow them climb and hold on to branches better. In contrast, other muscles are not different between arboreal and non-arboreal species. Further studies focusing on additional anatomical features of the lizard forelimb as well as studies documenting how lizards use the arboreal niche are needed to fully understand how an arboreal life style may constrain limb morphology in lizards. Anat Rec, 301:424-433, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Ecosystem , Forelimb/anatomy & histology , Lizards/anatomy & histology , Locomotion , Muscle, Skeletal/anatomy & histology , Animals , Ecology , Phylogeny
2.
J Anat ; 231(1): 38-58, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28429369

ABSTRACT

Despite the long-standing interest in the evolution of the brain, relatively little is known about variation in brain anatomy in frogs. Yet, frogs are ecologically diverse and, as such, variation in brain anatomy linked to differences in lifestyle or locomotor behavior can be expected. Here we present a comparative morphological study focusing on the macro- and micro-anatomy of the six regions of the brain and its choroid plexus: the olfactory bulbs, the telencephalon, the diencephalon, the mesencephalon, the rhombencephalon, and the cerebellum. We also report on the comparative anatomy of the plexus brachialis responsible for the innervation of the forelimbs. It is commonly thought that amphibians have a simplified brain organization, associated with their supposedly limited behavioral complexity and reduced motor skills. We compare frogs with different ecologies that also use their limbs in different contexts and for other functions. Our results show that brain morphology is more complex and more variable than typically assumed. Moreover, variation in brain morphology among species appears related to locomotor behavior as suggested by our quantitative analyses. Thus we propose that brain morphology may be related to the locomotor mode, at least in the frogs included in our analysis.


Subject(s)
Anatomic Variation , Anura/anatomy & histology , Brain/anatomy & histology , Locomotion , Animals , Anura/physiology
3.
Zoolog Sci ; 30(12): 1063-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24320185

ABSTRACT

Terrestrial environments surrounding aquatic resources are important and intensively used by semi-aquatic species. In the present work, terrestrial dispersal and nesting sites of the freshwater turtle Phrynops hilarii were analyzed in the floodplain of the Paraná River, using field data and variables obtained from remote sensing. A total of 112 turtles and 44 nests were recorded during road sampling for one year (covered a total of 786 km in 30 surveys). Individuals were at a mean distance of 171.45 m from water, with a negative correlation between number of turtles and distance from water bodies. No significant differences in distance of turtles from water were observed among seasons. Phrynops hilarii nested at a mean distance of 136.51 m from water, showing a negative correlation between number of nests and distance from water bodies. Mean elevation of nests relative to maximum level of water body nearest each record was 1.13 m. The correlation between number of nests and elevation of the nearest water body was positive and significant. The landscape surrounding wetlands is important for P. hilarii to complete the life cycle, as nesting is done in this environment. Our results show that the habitat selected for nesting and terrestrial dispersal was proportionally different from that available in the entire study area, with a higher proportion of wetlands, grasslands and forests.


Subject(s)
Motor Activity/physiology , Nesting Behavior/physiology , Rivers , Turtles/physiology , Animals , Female
4.
Anat Rec (Hoboken) ; 292(6): 842-53, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19462454

ABSTRACT

In lizards, distinct patterns of the tendinous structures associated with the forearm flexors have been described. In most lizards, the m. flexor digitorum longus ends in a tendinous plate with an embedded sesamoid, from which tendons run to the terminal phalanx of each digit. This structure is known as the flexor plate. In many polychrotid lizards, however, the flexor digitorum longus muscle is continuous with individual tendons running to each digit, and no complete flexor plate is present. In most geckos, the flexor plate is reduced to a tendinous plate without sesamoid. To evaluate the consequences of these differences in morphology on locomotion and grasping, we compared the use of the fore-arm and hand in lizards exhibiting three different tendon patterns (Pogona vitticeps, an agamid with a well-developed flexor plate; Gekko gecko, a gekkonid with a flexor plate, but without an embedded sesamoid; Anolis equestris, a polychrotid without flexor plate, but showing independent tendons running to each digit) while moving on different substrates. We found that the presence of a flexor plate with sesamoid bone prevents digital flexion and creates a rather stiff palmar surface in P. vitticeps. This configuration makes it impossible for P. vitticeps to grasp narrow branches and results in a strongly impaired locomotor performance on narrow substrates. Both G. gecko and A. equestris can flex the palms of their hands and their fingers more extensively, and do so when moving on narrow substrates. We suggest that the reduction of the flexor plate in both G. gecko and A. equestris allows these animals to move effectively on narrow substrates.


Subject(s)
Hand Strength/physiology , Lizards/anatomy & histology , Locomotion/physiology , Tendons/anatomy & histology , Animals , Computer Simulation , Lizards/physiology , Tendons/physiology , Video Recording
5.
J Anat ; 213(3): 296-307, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18565111

ABSTRACT

Frogs are characterized by a unique morphology associated with their saltatory lifestyle. Although variation in the form and function of the pelvic girdle and associated appendicular system related to specialized locomotor modes such as swimming or burrowing has been documented, the forelimbs have typically been viewed as relatively unspecialized. Yet, previous authors have noted versatility in forelimb function among arboreal frogs associated with feeding. Here we study the morphology and function of the forelimb and hand during locomotion in two species of arboreal frogs (Litoria caerulea and Phyllomedusa bicolor). Our data show a complex arrangement of the distal forelimb and hand musculature with some notable differences between species. Analyses of high-speed video and video fluoroscopy recordings show that forelimbs are used in alternating fashion in a diagonal sequence footfall pattern and that the position of the hand is adjusted when walking on substrates of different diameters. Electromyographic recordings show that the flexors of the hand are active during substrate contact, suggesting the use of gripping to generate a stabilizing torque. Measurements of grasping forces in vivo and during stimulation experiments show that both species, are capable of executing a so-called power grip but also indicates marked differences between species, in the magnitude of forces generated. Stimulation experiments showed an increased control of digit flexion in the more specialized of the two species, allowing it to execute a precision grip paralleled only by that seen in primates.


Subject(s)
Forelimb/anatomy & histology , Hand Strength/physiology , Locomotion/physiology , Ranidae/anatomy & histology , Weight-Bearing/physiology , Adaptation, Physiological , Animals , Biomechanical Phenomena , Electric Stimulation , Electromyography , Forelimb/physiology , Muscles/anatomy & histology , Muscles/physiology , Ranidae/physiology , Video Recording
6.
J Anat ; 213(2): 159-72, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19172731

ABSTRACT

We compared the muscular anatomy of the distal front limb in terrestrial and aquatic chelonians to test whether observed differences between the two groups are associated with their divergent lifestyles and locomotor modes. Given the different use of the forelimb in the two environments (body support and propulsion on land vs. mainly propulsion in water) we expected that: (1) aquatic and terrestrial turtles would show differences in their muscular anatomy, with aquatic species having more individualized muscle bundlesto allow for the complex forearm movements observed during swimming, and (2) that terrestrial turtles would have more robust muscles to support their body weight against gravity. To address these questions, we examined the forelimb myology and associated tissues in six aquatic or semi-aquatic turtles (Phyrnops hilarii, Podocnemis unifilis, Trachemys scripta, Sacalia bealei, Cuora amboinensis and Mauremys caspica) and six terrestrial or semi-terrestrial turtles (Geochelone chilensis, Testudo graeca, Cuora galbinifrons, Glyptemys insculpta, Terrapene carolina and Rhinoclemmys pulcherrima). This paper describes the general structure of the forelimb musculature in all species, and quantifies muscle masses in those species with more than five specimens available (Ph. hilarii, Po. unifilis and Ge. chilensis). The general structure of the forelimb muscles in the strictly terrestrial species Ge. chilensis and Tes. graeca was found to be notably different from the pattern of the aquatic and semi-aquatic species examined, showing a distinct fusion of the different muscular bodies. Ter. carolina also show a distinctly terrestrial pattern, but a less extensive tendon development. R. pulcherrima and GI. insculpta were found to be morphologically intermediate; in the geoemydids the strictly terrestrial bauplan never appears. Quantitative differences in the robustness or mass of the distal forelimb muscles were also observed for the species investigated, supporting our prediction that the extensor muscles are more robust in terrestrial turtles. However, in contrast to our expectations, not only the extensor muscles of the distal forelimb (which are crucial in providing both body support and propulsion), but all muscles acting around the wrist were found to be heavier in terrestrial turtles.


Subject(s)
Forelimb/anatomy & histology , Muscle, Skeletal/anatomy & histology , Turtles/anatomy & histology , Animals , Ecosystem , Phylogeny , Species Specificity , Turtles/classification
7.
Anat Rec (Hoboken) ; 290(12): 1551-67, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17957750

ABSTRACT

Intercalary elements are additional skeletal structures of digits of many anuran amphibians. Twelve terminal clades in the neobatrachian lineage of frogs have intercalary elements revealing it is a homoplastic character with five to seven gains and two to four losses along a consensus phylogeny of the Neobatrachia. We analyzed anatomical variation of intercalary elements, related structures (distal phalanges, tendons, and muscles), and articulations of digits of 45 anuran species, representing eight suprageneric terminal taxa. The intercalary elements are integrated in a complex system that is probably related to different types of movements, which are produced by a similar set of muscles and tendons with limited variation among the studied taxa. Species in the clades Hyloides and Ranoides show distinctive patterns of morphostructural features in their intercalary elements that are usually wedge-shaped and composed of hyaline cartilage in Ranoides, and biconcave and composed of embryonic cartilage in Hyloides. Features derived from the typical hyloid condition may only be interpreted in some Hylidae (Pseudis and Lysapsus) and Centrolenidae. In Ranoides, the described features of the intercalary elements are found in all taxa examined with the exception of Leptopelis, which have an intercalary element similar to the other Ranoides but formed by connective tissue. Several features are shared by all taxa having intercalary elements: (1) the intercalary elements differ from the phalanges by lacking terminal epiphyses, (2) they are present in hands and feet, and (3) they appear in all digits. This finding suggests that the genetic basis for presence of intercalary elements may be homologous in all these taxa and may have evolved only once early in neobatrachian history.


Subject(s)
Anura/anatomy & histology , Extremities/anatomy & histology , Phylogeny , Animals , Anura/classification , Bone and Bones/anatomy & histology , Cartilage/anatomy & histology , Connective Tissue/anatomy & histology , Muscle, Skeletal/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL