Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 278: 126448, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38905962

ABSTRACT

The analysis of pesticide residues and mycotoxins in baby food demands exceptionally low limits of quantitation, necessitating the use of highly sensitive instruments capable of conducting trace analyses. High-resolution instruments typically fail to detect such low levels. However, the latest advancements in liquid time-of-flight technology, when coupled with ion trapping, enable ion enrichment, thereby improving detection levels. This allows for the analysis of these substances at low concentration levels, benefiting from enhanced mass accuracy. Additionally, the use of mass accuracy data helped eliminate matrix interferences, thereby enabling high-confidence identification. We developed a multi-residue method to analyse 219 pesticide residues and 9 mycotoxin residues in baby food matrices. Utilizing a QuEChERS-based extraction method, the samples were then analysed using an LC-Zeno® trap QTOF with mass window screening acquisition. For pesticides, the limit of quantitation was 0.001-0.003 mg/kg for 81 % of the evaluated compounds, 0.005 mg/kg for 13 %, 0.010 mg/kg for 4 % and 0.020-0.030 for 2 %; good linearities were obtained at these levels. Apparent recoveries were evaluated at 0.003, 0.005, and 0.010 mg/kg. At the lowest recovery level, 93 % of compounds showed recoveries between 70 and 120 %. The rest of the compounds were in the range of 63-129 %, with relative standard deviation values below 20 %. For mycotoxins, the limits of quantitation ranged from 0.0001 to 0.100 mg/kg, with matrix-matched concentrations assessed within this range. Recoveries were evaluated at low concentration range (0.001-0.003 mg/kg) and high range (0.020-0.050) with apparent recoveries values between 92 and 140 %. Finally, a total of 31 commercial baby food samples were analysed using this method. The results indicated that 16 samples contained pesticide residues, while two samples were found to have mycotoxins.

2.
Anal Bioanal Chem ; 415(26): 6551-6560, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37698599

ABSTRACT

Spices such as paprika, curry, turmeric, dry chilli, and black pepper are grown in various geographic locations and widely used by consumers across the world. Pesticides applied during crop production practices could contaminate the produce, affecting the quality and posing a health risk for consumers. The complexity of the spice matrix and the wide range of target pesticides potentially present require special sample extraction and clean-up treatments to overcome matrix interference and ion suppression. In this study, sample extracts from spice matrices (paprika/curry/turmeric/dry chilli/black pepper) were cleaned up by an automated µSPE clean-up method for multi-residue analysis of pesticides using LC-MS/MS. The automated µSPE clean-up method involves pre-filled cartridges containing various sorbent materials suitable for numerous co-extractives and the automated clean-up process was carried out using an autosampler. The regulatory limit for pesticides in spices varies with type, with a low MRL of 0.05 mg kg-1 or higher for 99% of the analytes. At spiking concentrations of 0.05 and 0.1 mg kg-1, good recoveries between 70 and 120% with RSD values below 20% were achieved for more than 98% of the compounds. With automatic clean-up of samples that takes 5 min/sample, 20% increased output per day shows an important advantage achieved compared to manual clean-up.

3.
J Chromatogr A ; 1694: 463906, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36907077

ABSTRACT

Clean-up step is essential during the multiresidue sample preparation process to remove undesired matrix components that may cause analytical interferences or suppression effect. However, its application generally by specific sorbents entails time-consuming work producing low recoveries for some compounds. Moreover, it usually needs to be adapted to the different co-extractives from the matrix present in the samples by using different chemical sorbents increasing the number of validation procedures. Therefore, the development of a more efficient and automated and unified clean-up procedure means a significant time reduction and laboratory work with improved performance. In this study, extracts from different matrices (tomato, orange, rice, avocado and black tea) were purified by manual dispersive clean-up (different procedures according to the matrix group) in parallel with an automated µSPE clean-up workflow, in both cases based on QuEChERS extraction. The latter procedure employed clean-up cartridges containing a mixture of sorbent materials (anhydrous MgSO4/PSA/C18/CarbonX) suitable for multiple matrices. All the samples were analysed by liquid chromatography mass spectrometry and the results obtained from both procedures have been compared in terms of the extract cleanness, performance, interferences, and sample workflow. At the levels studied, similar recoveries were achieved by both techniques (manual and automated) except for reactive compounds when PSA was used as the sorbent material producing low recoveries. However, the µSPE recoveries were between 70-120%. Furthermore, closer calibration line slopes were provided when µSPE was applied to the different matrix groups studied. It is important to note that up to 30% more samples per day can be analysed using an automated µSPE compared to the manual method (which requires shaking, centrifuging, then taking the supernatant and adding formic acid in ACN); it also provides good repeatability - an RSD (%) < 10%. Consequently, this technique is a very useful option for routine analyses, greatly simplifying the work of muti-residue methods.


Subject(s)
Pesticide Residues , Pesticides , Humans , Male , Pesticides/analysis , Pesticide Residues/analysis , Tandem Mass Spectrometry/methods , Prostate-Specific Antigen/analysis , Chromatography, Liquid/methods , Solid Phase Extraction/methods
4.
Foods ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370015

ABSTRACT

Nowadays, highly polar pesticides are not included in multiresidue methods due to their physico-chemical characteristics and therefore, specific analytical methodologies are required for their analysis. Laboratories are still looking for a pluri-residue method that encompasses the largest number of polar pesticides. The aim of this work was the simultaneous determination of ethephon, 2-hydroxyethylphosphonic acid (HEPA), fosetyl aluminum, glyphosate, aminomethylphosphonic acid (AMPA), N-acetyl-glyphosate and N-acetyl-AMPA in tomatoes, oranges, aubergines and grapes. For that purpose, an ultra high performance liquid chromatography (UHPLC) coupled to a high resolution single mass spectrometer Orbitrap-MS were used. Different stationary phases were evaluated for chromatographic separation, and among them, the stationary phase Torus DEA provided the best separation of the selected compounds. The QuPPe method was used for the extraction of the analytes, but slight modifications were needed depending on the matrix. The developed method was validated, observing matrix effect in all matrices. Intra- and inter-day precision were estimated, and relative standard deviation were lower than 19%. Recoveries were satisfactory, and mean values ranged from 70% to 110%. Limits of quantification were between 25 and 100 µg kg-1. Finally, the analytical method was applied to different fruits and vegetables (oranges, tomatoes, aubergines and grapes).

SELECTION OF CITATIONS
SEARCH DETAIL
...