Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2748: 99-108, 2024.
Article in English | MEDLINE | ID: mdl-38070110

ABSTRACT

Functional precision medicine (FPM) has emerged as a new approach to improve cancer treatment. Despite its potential, FPM assays present important limitations such as the number of cells and trained personnel required. To overcome these impediments, here we describe a novel microfluidic platform that can be used to perform FPM assays, optimizing the use of primary cancer cells and simplifying the process by using microfluidics to automatize the process.


Subject(s)
Microfluidics , Precision Medicine , Lab-On-A-Chip Devices , Biological Assay
2.
Front Pediatr ; 11: 1269560, 2023.
Article in English | MEDLINE | ID: mdl-37800011

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, with survival rates exceeding 85%. However, 15% of patients will relapse; consequently, their survival rates decrease to below 50%. Therefore, several research and innovation studies are focusing on pediatric relapsed or refractory ALL (R/R ALL). Driven by this context and following the European strategic plan to implement precision medicine equitably, the Relapsed ALL Network (ReALLNet) was launched under the umbrella of SEHOP in 2021, aiming to connect bedside patient care with expert groups in R/R ALL in an interdisciplinary and multicentric network. To achieve this objective, a board consisting of experts in diagnosis, management, preclinical research, and clinical trials has been established. The requirements of treatment centers have been evaluated, and the available oncogenomic and functional study resources have been assessed and organized. A shipping platform has been developed to process samples requiring study derivation, and an integrated diagnostic committee has been established to report results. These biological data, as well as patient outcomes, are collected in a national registry. Additionally, samples from all patients are stored in a biobank. This comprehensive repository of data and samples is expected to foster an environment where preclinical researchers and data scientists can seek to meet the complex needs of this challenging population. This proof of concept aims to demonstrate that a network-based organization, such as that embodied by ReALLNet, provides the ideal niche for the equitable and efficient implementation of "what's next" in the management of children with R/R ALL.

3.
NPJ Precis Oncol ; 6(1): 90, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456699

ABSTRACT

Precision medicine is starting to incorporate functional assays to evaluate anticancer agents on patient-isolated tissues or cells to select for the most effective. Among these new technologies, dynamic BH3 profiling (DBP) has emerged and extensively been used to predict treatment efficacy in different types of cancer. DBP uses synthetic BH3 peptides to measure early apoptotic events ('priming') and anticipate therapy-induced cell death leading to tumor elimination. This predictive functional assay presents multiple advantages but a critical limitation: the cell number requirement, that limits drug screening on patient samples, especially in solid tumors. To solve this problem, we developed an innovative microfluidic-based DBP (µDBP) device that overcomes tissue limitations on primary samples. We used microfluidic chips to generate a gradient of BIM BH3 peptide, compared it with the standard flow cytometry based DBP, and tested different anticancer treatments. We first examined this new technology's predictive capacity using gastrointestinal stromal tumor (GIST) cell lines, by comparing imatinib sensitive and resistant cells, and we could detect differences in apoptotic priming and anticipate cytotoxicity. We then validated µDBP on a refractory GIST patient sample and identified that the combination of dactolisib and venetoclax increased apoptotic priming. In summary, this new technology could represent an important advance for precision medicine by providing a fast, easy-to-use and scalable microfluidic device to perform DBP in situ as a routine assay to identify the best treatment for cancer patients.

4.
Front Cell Dev Biol ; 9: 695225, 2021.
Article in English | MEDLINE | ID: mdl-34568318

ABSTRACT

Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 - a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.

5.
Cell Death Dis ; 11(8): 634, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32801295

ABSTRACT

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood and adolescence. Refractory/relapsed RMS patients present a bad prognosis that combined with the lack of specific biomarkers impairs the development of new therapies. Here, we utilize dynamic BH3 profiling (DBP), a functional predictive biomarker that measures net changes in mitochondrial apoptotic signaling, to identify anti-apoptotic adaptations upon treatment. We employ this information to guide the use of BH3 mimetics to specifically inhibit BCL-2 pro-survival proteins, defeat resistance and avoid relapse. Indeed, we found that BH3 mimetics that selectively target anti-apoptotic BCL-xL and MCL-1, synergistically enhance the effect of clinically used chemotherapeutic agents vincristine and doxorubicin in RMS cells. We validated this strategy in vivo using a RMS patient-derived xenograft model and observed a reduction in tumor growth with a tendency to stabilization with the sequential combination of vincristine and the MCL-1 inhibitor S63845. We identified the molecular mechanism by which RMS cells acquire resistance to vincristine: an enhanced binding of BID and BAK to MCL-1 after drug exposure, which is suppressed by subsequently adding S63845. Our findings validate the use of DBP as a functional assay to predict treatment effectiveness in RMS and provide a rationale for combining BH3 mimetics with chemotherapeutic agents to avoid tumor resistance, improve treatment efficiency, and decrease undesired secondary effects.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/pharmacology , Rhabdomyosarcoma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Biomarkers, Pharmacological/analysis , Biomarkers, Pharmacological/blood , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Male , Mice, Nude , Mitochondria/drug effects , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Recurrence, Local/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrimidines/pharmacology , Thiophenes/pharmacology , Vincristine/pharmacology , Xenograft Model Antitumor Assays , bcl-X Protein/drug effects , bcl-X Protein/metabolism
6.
Clin Cancer Res ; 26(4): 761-763, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31843752

ABSTRACT

CDK9-specific inhibition with AZD4573 impairs cancer-promoting gene expression such as MCL-1 and has been proven effective in hematologic malignancies preclinical models. This new clinical candidate should be further explored in the clinic not only as a monotherapy but also in combination with BH3 mimetics to prevent treatment resistance.See related article by Cidado et al., p. 922.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Apoptosis/drug effects , Cyclin-Dependent Kinase 9 , Humans , Myeloid Cell Leukemia Sequence 1 Protein , Protein Kinase Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...