Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; : e0063724, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990040

ABSTRACT

As a potential side effect of the severe acute respiratory syndrome coronavirus type 2 pandemic, invasive group A Streptococcus (iGAS) infections in Europe have increased dramatically in both children and adults in the end of 2022. This epidemiological and molecular study describes the distributions of streptococcal genes encoding the M antigen (emm types) and superantigens in patients with invasive and non-invasive GAS infections. From December 2022 to December 2023, a total of 163 GAS isolates were collected from sterile and non-sterile sites of patients at five hospitals in Germany including two tertiary care centers. Genes encoding M protein and superantigens were determined following the guidelines of CDC Streptococcus laboratory. Patients' characteristics were reviewed retrospectively. Correlations of clinical factors, emm types, and superantigens with rates of invasive infections were analyzed. Of the 163 included GAS cases, 112 (69%) were considered as invasive. In total, 33 different emm types were observed, of which emm1.0 (n = 49; 30%), emm89.0 (n = 15; 9%), and emm12.0 (n = 14; 9%) were most prevalent. In total, 70% of emm1.0 isolates belonged to M1UK lineage. No difference in invasive infections was observed for the M1UK lineage compared with other emm1.0 isolates. However, the emm1.0 type, presence of speA1-3, speG, or speJ, as well as adulthood were significantly associated with invasive infections. In contrast, emm12.0 isolates were significantly less associated with invasive infections. Multivariable analysis confirmed a significant influence of speJ and adulthood on iGAS infections. This study underlines the importance of continuous monitoring of genomic trends and identification of emerging GAS variants. This may aid in delineating pathogenicity factors of Streptococcus pyogenes that propel invasive infections.

2.
Antibiotics (Basel) ; 11(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35625189

ABSTRACT

Multidrug resistance is an emerging healthcare issue, especially concerning Pseudomonas aeruginosa. In this multicenter study, P. aeruginosa isolates with resistance against meropenem detected by routine methods were collected and tested for carbapenemase production and susceptibility against ceftazidime-avibactam. Meropenem-resistant isolates of P. aeruginosa from various clinical materials were collected at 11 tertiary care hospitals in Germany from 2017−2019. Minimum inhibitory concentrations (MICs) were determined via microdilution plates (MICRONAUT-S) of ceftazidime-avibactam and meropenem at each center. Detection of the presence of carbapenemases was performed by PCR or immunochromatography. For meropenem-resistant isolates (n = 448), the MIC range of ceftazidime-avibactam was 0.25−128 mg/L, MIC90 was 128 mg/L and MIC50 was 16 mg/L. According to EUCAST clinical breakpoints, 213 of all meropenem-resistant P. aeruginosa isolates were categorized as susceptible (47.5%) to ceftazidime-avibactam. Metallo-ß-lactamases (MBL) could be detected in 122 isolates (27.3%). The MIC range of ceftazidime-avibactam in MBL-positive isolates was 4−128 mg/L, MIC90 was >128 mg/L and MIC50 was 32 mg/L. There was strong variation in the prevalence of MBL-positive isolates among centers. Our in vitro results support ceftazidime-avibactam as a treatment option against infections caused by meropenem-resistant, MBL-negative P. aeruginosa.

SELECTION OF CITATIONS
SEARCH DETAIL
...