Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Acad Radiol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38582685

ABSTRACT

RATIONALE AND OBJECTIVES: To assess the impact of deep learning-based imaging reconstruction (DLIR) on quantitative results of coronary artery calcium scoring (CACS) and to evaluate the potential of DLIR for radiation dose reduction in CACS. METHODS: For a retrospective cohort of 100 consecutive patients (mean age 62 ±10 years, 40% female), CACS scans were reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR-V in 30%, 60% and 90% strength) and DLIR in low, medium and high strength. CACS was quantified semi-automatically and compared between image reconstructions. In a phantom study, a cardiac calcification insert was scanned inside an anthropomorphic thorax phantom at standard dose, 50% dose and 25% dose. FBP reconstructions at standard dose served as the reference standard. RESULTS: In the patient study, DLIR led to a mean underestimation of Agatston score by 3.5, 6.4 and 11.6 points at low, medium and high strength, respectively. This underestimation of Agatston score was less pronounced for DLIR than for ASiR-V. In the phantom study, quantitative CACS results increased with reduced radiation dose and decreased with increasing strength of DLIR. Medium strength DLIR reconstruction at 50% dose reduction and high strength DLIR reconstruction at 75% dose reduction resulted in quantitative CACS results that were comparable to FBP reconstructions at standard dose. CONCLUSION: Compared to FBP as the historical reference standard, DLIR leads to an underestimation of CACS but this underestimation is more moderate than with ASiR-V. DLIR can offset the increase in image noise and calcium score at reduced dose and may thus allow for substantial radiation dose reductions in CACS studies.

2.
Bioengineering (Basel) ; 11(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534481

ABSTRACT

CT protocols that diagnose COVID-19 vary in regard to the associated radiation exposure and the desired image quality (IQ). This study aims to evaluate CT protocols of hospitals participating in the RACOON (Radiological Cooperative Network) project, consolidating CT protocols to provide recommendations and strategies for future pandemics. In this retrospective study, CT acquisitions of COVID-19 patients scanned between March 2020 and October 2020 (RACOON phase 1) were included, and all non-contrast protocols were evaluated. For this purpose, CT protocol parameters, IQ ratings, radiation exposure (CTDIvol), and central patient diameters were sampled. Eventually, the data from 14 sites and 534 CT acquisitions were analyzed. IQ was rated good for 81% of the evaluated examinations. Motion, beam-hardening artefacts, or image noise were reasons for a suboptimal IQ. The tube potential ranged between 80 and 140 kVp, with the majority between 100 and 120 kVp. CTDIvol was 3.7 ± 3.4 mGy. Most healthcare facilities included did not have a specific non-contrast CT protocol. Furthermore, CT protocols for chest imaging varied in their settings and radiation exposure. In future, it will be necessary to make recommendations regarding the required IQ and protocol parameters for the majority of CT scanners to enable comparable IQ as well as radiation exposure for different sites but identical diagnostic questions.

3.
Sci Rep ; 14(1): 2494, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291105

ABSTRACT

We investigated the effect of deep learning-based image reconstruction (DLIR) compared to iterative reconstruction on image quality in CT pulmonary angiography (CTPA) for suspected pulmonary embolism (PE). For 220 patients with suspected PE, CTPA studies were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR-V 30%, 60% and 90%) and DLIR (low, medium and high strength). Contrast-to-noise ratio (CNR) served as the primary parameter of objective image quality. Subgroup analyses were performed for normal weight, overweight and obese individuals. For patients with confirmed PE (n = 40), we further measured PE-specific CNR. Subjective image quality was assessed independently by two experienced radiologists. CNR was lowest for FBP and enhanced with increasing levels of ASiR-V and, even more with increasing strength of DLIR. High strength DLIR resulted in an additional improvement in CNR by 29-67% compared to ASiR-V 90% (p < 0.05). PE-specific CNR increased by 75% compared to ASiR-V 90% (p < 0.05). Subjective image quality was significantly higher for medium and high strength DLIR compared to all other image reconstructions (p < 0.05). In CT pulmonary angiography, DLIR significantly outperforms iterative reconstruction for increasing objective and subjective image quality. This may allow for further reductions in radiation exposure in suspected PE.


Subject(s)
Deep Learning , Humans , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods , Algorithms , Angiography/methods
4.
Quant Imaging Med Surg ; 14(1): 20-30, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223095

ABSTRACT

Background: Myocardial mapping techniques can be used to quantitatively assess alterations in myocardial tissue properties. This study aims to evaluate the influence of spatial resolution on quantitative results and reproducibility of native myocardial T1 mapping in cardiac magnetic resonance imaging (MRI). Methods: In this cross-sectional study with prospective data collection between October 2019 and February 2020, 50 healthy adults underwent two identical cardiac MRI examinations in the radiology department on the same day. T1 mapping was performed using a MOLLI 5(3)3 sequence with higher (1.4 mm × 1.4 mm) and lower (1.9 mm × 1.9 mm) in-plane spatial resolution. Global quantitative results of T1 mapping were compared between high-resolution and low-resolution acquisitions using paired t-test. Intra-class correlation coefficient (ICC) and Bland-Altman statistics (absolute and percentage differences as means ± SD) were used for assessing test-retest reproducibility. Results: There was no significant difference between global quantitative results acquired with high vs. low-resolution T1 mapping. The reproducibility of global T1 values was good for high-resolution (ICC: 0.88) and excellent for low-resolution T1 mapping (ICC: 0.95, P=0.003). In subgroup analyses, inferior test-retest reproducibility was observed for high spatial resolution in women compared to low spatial resolution (ICC: 0.71 vs. 0.91, P=0.001) and heart rates >77 bpm (ICC: 0.53 vs. 0.88, P=0.004). Apical segments had higher T1 values and variability compared to other segments. Regional T1 values for basal (ICC: 0.81 vs. 0.89, P=0.023) and apical slices (ICC: 0.86 vs. 0.92, P=0.024) showed significantly higher reproducibility in low-resolution compared to high-resolution acquisitions but without differences for midventricular slice (ICC: 0.91 vs. 0.92, P=0.402). Conclusions: Based on our data, we recommend a spatial resolution on the order of 1.9 mm × 1.9 mm for native myocardial T1 mapping using a MOLLI 5(3)3 sequence at 1.5 T particularly in individuals with higher heart rates and women.

5.
Quant Imaging Med Surg ; 13(2): 970-981, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36819291

ABSTRACT

Background: This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI). Methods: We analyzed 50 consecutive patients (median age 80 years, 25 men) who underwent TAVI planning CT on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) and DLIR. Intravascular image noise, edge sharpness, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified for ascending aorta, descending aorta, abdominal aorta and iliac arteries. Two readers (one radiologist and one interventional cardiologist) scored task-specific subjective image quality on a five-point scale. Results: DLIR significantly reduced median image noise by 29-57% at all anatomical locations (all P<0.001). Accordingly, median SNR improved by 44-133% (all P<0.001) and median CNR improved by 44-125% (all P<0.001). DLIR significantly improved subjective image quality for all four pre-specified TAVI-specific tasks (measuring the annulus, assessing valve morphology and calcifications, the coronary ostia, and the suitability of the aorto-iliac access route) for both the radiologist and the interventional cardiologist (P≤0.001). Measurements of the aortic annulus circumference, area and diameter did not differ between ASIR-V and DLIR reconstructions (all P>0.05). Conclusions: DLIR significantly improves objective and subjective image quality in TAVI planning CT compared to a state-of-the-art iterative reconstruction without affecting measurements of the aortic annulus. This may provide an opportunity for further reductions in contrast medium volume in this population.

SELECTION OF CITATIONS
SEARCH DETAIL
...