Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167311, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909851

ABSTRACT

Tumours exhibit significant heterogeneity in their molecular profiles across patients, largely influenced by the tissue of origin, where certain driver gene mutations are predominantly associated with specific cancer types. Here, we unveil an additional layer of complexity: some cancer types display anatomic location-specific mutation profiles akin to tissue-specificity. To better understand this phenomenon, we concentrate on colon cancer. While prior studies have noted changes of the frequency of molecular alterations along the colon, the underlying reasons and whether those changes occur rather gradual or are distinct between the left and right colon, remain unclear. Developing and leveraging stringent statistical models on molecular data from 522 colorectal tumours from The Cancer Genome Atlas, we reveal disparities in molecular properties between the left and right colon affecting many genes. Interestingly, alterations in genes responsive to environmental cues and properties of the tumour ecosystem, including metabolites which we quantify in a cohort of 27 colorectal cancer patients, exhibit continuous trends along the colon. Employing network methodologies, we uncover close interactions between metabolites and genes, including drivers of colon cancer, showing continuous abundance or alteration profiles. This underscores how anatomic biases in the composition and interactions within the tumour ecosystem help explaining gradients of carcinogenesis along the colon.

2.
Cell Metab ; 35(6): 907-909, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37285805

ABSTRACT

The composition of nutrients in the tumor microenvironment is a key determinant of anti-tumor CD8+ T cell response. In this issue of Cell Metabolism, Jiang and colleagues unveil that tumor-derived fumarate dampens TCR signaling in CD8+ T cells, resulting in defective activation, loss of effector functions, and associated failure of tumor control.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , CD8-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Neoplasms/metabolism , Signal Transduction , Tumor Microenvironment
3.
Genome Med ; 15(1): 32, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37131219

ABSTRACT

BACKGROUND: The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS: Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS: Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS: We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Microbiota , Humans , Colorectal Neoplasms/genetics , Colonic Neoplasms/genetics , Bacteria/genetics , Sequence Analysis, RNA
4.
Cell Metab ; 35(4): 633-650.e9, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36898381

ABSTRACT

The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Linoleic Acid , Linoleic Acid/metabolism , Signal Transduction
5.
Int J Cancer ; 152(8): 1698-1706, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36468179

ABSTRACT

NK cells represent key players capable of driving antitumor immune responses. However, the potent immunosuppressive activity of the tumor microenvironment (TME) may impair their effector function. Here, we strengthen the importance of metabolic interactions between NK cells and TME and propose metabolic dysfunction as one of the major mechanisms behind NK failure in cancer treatment. In particular, we described that TME has a direct negative impact on NK cell function by disrupting their mitochondrial integrity and function in pediatric and adult patients with primary and metastatic cancer. Our results will help to design new strategies aimed at increasing the NK cell antitumor efficacy by their metabolic reprogramming. In this regard, we reveal an unprecedented role of IL15 in the metabolic reprogramming of NK cells enhancing their antitumor functions. IL15 prevents the inhibitory effect of soluble factors present in TME and restores both the metabolic characteristics and the effector function of NK cells inhibited by exposure to malignant pleural fluid. Thus, we propose here that IL15 may be exploited as a new strategy to metabolically reprogram NK cells with the aim of increasing the efficacy of NK-based immunotherapy in a wide range of currently refractory adult and pediatric solid tumors.


Subject(s)
Neoplasms , Tumor Microenvironment , Adult , Humans , Child , Interleukin-15/metabolism , Killer Cells, Natural , Neoplasms/metabolism , Immunotherapy/methods
6.
Nat Commun ; 13(1): 6752, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347862

ABSTRACT

CD8+ T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8+ T effector memory cells (TEM) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8+ T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8+ T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMKhigh CD8+ TEM in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , Neutrophils , Colorectal Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating
8.
J Hepatol ; 77(5): 1359-1372, 2022 11.
Article in English | MEDLINE | ID: mdl-35738508

ABSTRACT

BACKGROUND & AIMS: The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). METHODS: We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. RESULTS: We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. CONCLUSIONS: We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. LAY SUMMARY: Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , RNA/metabolism , T-Lymphocytes, Regulatory , Transcription Factors/metabolism , Tumor Microenvironment , Single-Cell Analysis
9.
Oncoimmunology ; 10(1): 1992880, 2021.
Article in English | MEDLINE | ID: mdl-34777916

ABSTRACT

Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.


Subject(s)
Melanoma , Pharmaceutical Preparations , Animals , Humans , Immunotherapy , Melanoma/drug therapy , Melanoma/genetics , Memory T Cells , Mice , Mitogen-Activated Protein Kinase Kinases , Proto-Oncogene Proteins B-raf/genetics
10.
Genome Med ; 12(1): 94, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33121525

ABSTRACT

BACKGROUND: High-grade serous ovarian cancer (HGSOC) is a major unmet need in oncology. The remaining uncertainty on its originating tissue has hampered the discovery of molecular oncogenic pathways and the development of effective therapies. METHODS: We used an approach based on the retention in tumors of a DNA methylation trace (OriPrint) that distinguishes the two putative tissues of origin of HGSOC, the fimbrial (FI) and ovarian surface epithelia (OSE), to stratify HGSOC by several clustering methods, both linear and non-linear. The identified tumor subtypes (FI-like and OSE-like HGSOC) were investigated at the RNAseq level to stratify an in-house cohort of macrodissected HGSOC FFPE samples to derive overall and disease-free survival and identify specific transcriptional alterations of the two tumor subtypes, both by classical differential expression and weighted correlation network analysis. We translated our strategy to published datasets and verified the co-occurrence of previously described molecular classification of HGSOC. We performed cytokine analysis coupled to immune phenotyping to verify alterations in the immune compartment associated with HGSOC. We identified genes that are both differentially expressed and methylated in the two tumor subtypes, concentrating on PAX8 as a bona fide marker of FI-like HGSOC. RESULTS: We show that: - OriPrint is a robust DNA methylation tracer that exposes the tissue of origin of HGSOC. - The tissue of origin of HGSOC is the main determinant of DNA methylation variance in HGSOC. - The tissue of origin is a prognostic factor for HGSOC patients. - FI-like and OSE-like HGSOC are endowed with specific transcriptional alterations that impact patients' prognosis. - OSE-like tumors present a more invasive and immunomodulatory phenotype, compatible with its worse prognostic impact. - Among genes that are differentially expressed and regulated in FI-like and OSE-like HGSOC, PAX8 is a bona fide marker of FI-like tumors. CONCLUSIONS: Through an integrated approach, our work demonstrates that both FI and OSE are possible origins for human HGSOC, whose derived subtypes are both molecularly and clinically distinct. These results will help define a new roadmap towards rational, subtype-specific therapeutic inroads and improved patients' care.


Subject(s)
Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Epigenesis, Genetic , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Methylation , Female , Gene Expression Profiling , Humans , Immunomodulation , Neoplasm Grading , Phenotype , Prognosis , Retrospective Studies , Transcriptome
11.
Front Immunol ; 11: 1915, 2020.
Article in English | MEDLINE | ID: mdl-32973794

ABSTRACT

The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.


Subject(s)
Immunologic Memory , Immunotherapy, Adoptive , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/therapy , T-Lymphocytes/transplantation , Adaptive Immunity , Animals , Cell Differentiation , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Phenotype , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Escape , Tumor Microenvironment
12.
J Exp Med ; 217(8)2020 08 03.
Article in English | MEDLINE | ID: mdl-32491160

ABSTRACT

CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Fatty Acids/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , Acyl-CoA Dehydrogenase, Long-Chain/biosynthesis , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Animals , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Down-Regulation , Fatty Acids/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Mutant Strains , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology
13.
J Clin Invest ; 130(4): 1896-1911, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31917684

ABSTRACT

Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity, although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue-restricted antigens (PTAs). At the initiation of GVHD, LN fibroblastic reticular cells (FRCs) rapidly reduced expression of genes regulated by DEAF1, an autoimmune regulator-like transcription factor required for intranodal expression of PTAs. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRCs during GVHD resulted in the activation of autoaggressive T cells and gut injury. Finally, we show that FRCs normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging autoreactive T cells from the repertoire.


Subject(s)
Autoantigens/immunology , Autoimmunity , Graft vs Host Disease/immunology , Intestinal Diseases/immunology , Lymph Nodes/immunology , T-Lymphocytes/immunology , Animals , Autoantigens/genetics , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Lymph Nodes/pathology , Mice , Mice, Knockout , T-Lymphocytes/pathology
14.
Cancer Res ; 77(3): 658-671, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27872095

ABSTRACT

Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR.


Subject(s)
Adenocarcinoma/pathology , CD8-Positive T-Lymphocytes/transplantation , Immunotherapy, Adoptive/methods , Minor Histocompatibility Antigens/immunology , Prostatic Neoplasms/pathology , Tumor Necrosis Factor-alpha/biosynthesis , Animals , CD8-Positive T-Lymphocytes/immunology , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Profiling , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
15.
Biomaterials ; 84: 76-85, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826297

ABSTRACT

Interactions between malignant and stromal cells and the 3D spatial architecture of the tumor both substantially modify tumor behavior, including the responses to small molecule drugs and biological therapies. Conventional 2D culture systems cannot replicate this complexity. To overcome these limitations and more accurately model solid tumors, we developed a highly versatile 3D PEG-fibrin hydrogel model of human lung adenocarcinoma. Our model relevantly recapitulates the effect of oncolytic adenovirus; tumor responses in this setting nearly reproduce those observed in vivo. We have also validated the use of this model for complex, long-term, 3D cultures of cancer cells and their stroma (fibroblasts and endothelial cells). Both tumor proliferation and invasiveness were enhanced in the presence of stromal components. These results validate our 3D hydrogel model as a relevant platform to study cancer biology and tumor responses to biological treatments.


Subject(s)
Adenoviridae/physiology , Fibrin/pharmacology , Models, Biological , Neoplasms/pathology , Oncolytic Viruses/physiology , Polyethylene Glycols/pharmacology , Tumor Microenvironment/drug effects , Adenoviridae/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Mice, SCID , Neoplasm Invasiveness , Oncolytic Viruses/drug effects , Organoids , Phenotype , Stromal Cells/drug effects , Stromal Cells/pathology
16.
Eur J Immunol ; 46(1): 192-203, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26464217

ABSTRACT

Dendritic cells (DCs) play a vital role in innate and adaptive immunities. Inducible depletion of CD11c(+) DCs engineered to express a high-affinity diphtheria toxin receptor has been a powerful tool to dissect DC function in vivo. However, despite reports showing that loss of DCs induces transient monocytosis, the monocyte population that emerges and the potential impact of monocytes on studies of DC function have not been investigated. We found that depletion of CD11c(+) cells from CD11c.DTR mice induced the expansion of a variant CD64(+) Ly6C(+) monocyte population in the spleen and blood that was distinct from conventional monocytes. Expansion of CD64(+) Ly6C(+) monocytes was independent of mobilization from the BM via CCR2 but required the cytokine, G-CSF. Indeed, this population was also expanded upon exposure to exogenous G-CSF in the absence of DC depletion. CD64(+) Ly6C(+) monocytes were characterized by upregulation of innate signaling apparatus despite the absence of inflammation, and an increased capacity to produce TNF-α following LPS stimulation. Thus, depletion of CD11c(+) cells induces expansion of a unique CD64(+) Ly6C(+) monocyte population poised to synthesize TNF-α. This finding will require consideration in experiments using depletion strategies to test the role of CD11c(+) DCs in immunity.


Subject(s)
Dendritic Cells/immunology , Monocytes/cytology , Monocytes/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Antigens, Ly/immunology , CD11c Antigen/immunology , Flow Cytometry , Mice , Mice, Knockout , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Receptors, IgG/immunology , Tumor Necrosis Factor-alpha/immunology
17.
Hum Mol Genet ; 24(R1): R67-73, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26160910

ABSTRACT

Adoptively transferred antigen-specific T cells that recognize tumor antigens through their native receptors have many potential benefits as treatment for virus-associated diseases and malignancies, due to their ability to selectively recognize tumor antigens, expand and persist to provide long-term protection. Infusions of T cells targeting Epstein-Barr virus (EBV) antigens have shown encouraging response rates in patients with post-transplant lymphoproliferative disease as well as EBV-positive lymphomas and nasopharyngeal cancer, although a recent study also showed that human papilloma virus-reactive T cells can induce complete regression of metastatic cervical cancer. This strategy is also being evaluated to target non-viral tumor-associated antigens. Targeting these less immunogenic antigens is more challenging, as tumor antigens are generally weak, and high avidity T cells specific for self-antigens are deleted in the thymus, but tumor responses have been reported. Current research focusses on defining factors that promote in vivo persistence of transferred cells and ameliorate the immunosuppressive microenvironment. To this end, investigators are evaluating the effects of combining adoptive transfer of antigen-specific T cells with other immunotherapy moieties such as checkpoint inhibitors. Genetic modification of infused T cells may also be used to overcome tumor evasion mechanisms, and vaccines may be used to promote in vivo proliferation.


Subject(s)
Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Cell- and Tissue-Based Therapy , Humans , Immunotherapy
18.
Genes Chromosomes Cancer ; 54(8): 516-526, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26052821

ABSTRACT

The pathways of NOTCH and PI3K/AKT are dysregulated in about 60% and 48% of T-cell acute lymphoblastic leukemia (T-ALL) patients, respectively. In this context, they interact and cooperate in controlling tumor cell biology. Here, we propose a novel mechanism by which the PI3K/AKT pathway regulates NOTCH1 in T-ALL, starting from the evidence that the inhibition of PI3K/AKT signaling induced by treatment with LY294002 or transient transfection with a dominant negative AKT mutant downregulates NOTCH1 protein levels and activity, without affecting NOTCH1 transcription. We showed that the withdrawal of PI3K/AKT signaling was associated to NOTCH1 phosphorylation in tyrosine residues and monoubiquitination of NOTCH1 detected by Ubiquitin capture assay. Co-immunoprecipitation assay and colocalization analysis further showed that the E3 ubiquitin ligase c-Cbl interacts and monoubiquitinates NOTCH1, activating its lysosomal degradation. These results suggest that the degradation of NOTCH1 could represent a mechanism of control by which NOTCH1 receptors are actively removed from the cell surface. This mechanism is finely regulated by the PI3K/AKT pathway in physiological conditions. In pathological conditions characterized by PI3K/AKT hyperactivation, such as T-ALL, the excessive AKT signaling could lead to NOTCH1 signaling dysregulation. Therefore, a therapeutic strategy directed to PI3K/AKT in T-ALL could contemporaneously inhibit the dysregulated NOTCH1 signaling. © 2015 Wiley Periodicals, Inc.

19.
Cancer Res ; 75(13): 2641-52, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25904681

ABSTRACT

A key challenge in the field of T-cell immunotherapy for cancer is creating a suitable platform for promoting differentiation of effector cells while at the same time enabling self-renewal needed for long-term memory. Although transfer of less differentiated memory T cells increases efficacy through greater expansion and persistence in vivo, the capacity of such cells to sustain effector functions within immunosuppressive tumor microenvironments may still be limiting. We have therefore directly compared the impact of effector versus memory differentiation of therapeutic T cells in tumor-bearing mice by introducing molecular switches that regulate cell fate decisions via mTOR. Ectopic expression of RAS homolog enriched in brain (RHEB) increased mTORC1 signaling, promoted a switch to aerobic glycolysis, and increased expansion of effector T cells. By rapidly infiltrating tumors, RHEB-transduced T cells significantly reduced the emergence of immunoedited escape variants. In contrast, expression of proline-rich Akt substrate of 40 kDa (PRAS40) inhibited mTORC1, promoted quiescence, and blocked tumor infiltration. Fate mapping studies following transient expression of PRAS40 demonstrated that mTORC1(low) T cells made no contribution to initial tumor control but instead survived to become memory cells proficient in generating recall immunity. Our data support the design of translational strategies for generating heterogeneous T-cell immunity against cancer, with the appropriate balance between promoting effector differentiation and self-renewal. Unlike pharmacologic inhibitors, the genetic approach described here allows for upregulation as well as inhibition of the mTORC1 pathway and is highly selective for the therapeutic T cells without affecting systemic mTORC1 functions.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Immunologic Memory/genetics , Immunotherapy, Adoptive/methods , Neoplasms, Experimental/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Line, Tumor , Humans , Immunologic Memory/immunology , Mechanistic Target of Rapamycin Complex 1 , Mice , Monomeric GTP-Binding Proteins/biosynthesis , Monomeric GTP-Binding Proteins/genetics , Multiprotein Complexes/immunology , Neoplasms, Experimental/prevention & control , Neuropeptides/biosynthesis , Neuropeptides/genetics , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Ras Homolog Enriched in Brain Protein , TOR Serine-Threonine Kinases/immunology , Transduction, Genetic
20.
Sci Transl Med ; 7(281): 281ra42, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25834108

ABSTRACT

Granulocyte colony-stimulating factor (G-CSF) is routinely used to collect peripheral blood stem cells (PBSCs) from healthy donors for allogeneic hematopoietic stem cell transplantation (allo-HSCT). We show that, in both humans and mice, G-CSF mobilizes a subset of CD34(+) cells with mature monocyte features. These cells, which are phenotypically and functionally conserved in mice and humans, are transcriptionally distinct from myeloid and monocytic precursors but similar to mature monocytes and endowed with immunosuppressive properties. In response to interferon-γ released by activated T cells, these cells produce nitric oxide, which induces allogeneic T cell death both in vitro and in vivo. These apoptotic T cells are engulfed by macrophages that release transforming growth factor-ß and promote regulatory T cell expansion. Indeed, the fraction of CD34(+) monocytes in peripheral blood CD34(+) cells inversely correlates with the incidence of acute graft-versus-host disease (GVHD) in humans. Therefore, G-CSF-mobilized cells are an attractive candidate population to be expanded ex vivo for cellular therapy against GVHD.


Subject(s)
Antigens, CD34/metabolism , Graft vs Host Disease/immunology , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization , Monocytes/metabolism , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Humans , Immune Tolerance/drug effects , Immunosuppression Therapy , Interferon-gamma/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Monocytes/drug effects , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/drug effects , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...