Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(11): 7675-7697, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641332

ABSTRACT

The extrusion of leguminous seeds induces the formation of Maillard reaction compounds (MRC) as a product of protein advanced glycation and oxidation, which lowers protein degradability in the rumen. However, the quantitative relationship between the parameters of pretreatment (i.e., addition of reducing sugars) and extrusion, and the formation of MRC has not been established yet. Moreover, the fate of the main stable MRC, Nε-carboxymethyl-lysine (CML), in the excretory routes has never been investigated in ruminants. We aimed to test the effects of the temperature of extrusion of white lupines with or without addition of reducing sugars on the formation of MRC, crude protein (CP) degradability in the rumen, N use efficiency for milk production (milk N/N intake), and performance of dairy cows. Two experiments with a replicated 4 × 4 Latin square design were conducted simultaneously with 16 (3 rumen-cannulated) multiparous Holstein cows to measure indicators of ruminal CP degradability (ruminal NH3 concentration, branched-chain volatile fatty acids), metabolizable protein supply (plasma essential AA concentration), N use efficiency (N isotopic discrimination), and dairy performance. In parallel, apparent total-tract digestibility of dry matter, organic matter, neutral detergent fibers, N, total Lys and CML, and partition of N and CML were measured with 4 cows in both experiments. The diets consisted on a DM basis of 20% raw or extruded lupines and 80% basal mixed ration of corn silage, silage and hay from permanent grasslands, pelleted concentrate, and a vitaminized mineral mix. Expected output temperatures of lupine extrusion were 115°C, 135°C, and 150°C, without and with the addition of reducing sugars before extrusion. The extrusion numerically reduced the in vitro ruminal CP degradability of the lupines, and consequently increased the predicted supply of CP to the small intestine. Nitrogen balance and urinary N excretion did not differ among dietary treatments in either experiment. Milk yield and N use efficiency for milk production increased with extrusion of lupines at 150°C without addition of reducing sugars compared with raw lupines. Nitrogen isotopic discrimination between dietary and animal proteins (the difference between δ15N in plasma and δ15N in the diet) were lower with lupines extruded at 150°C without and with addition of reducing sugars. Regardless of sugar addition, milk true protein yield was not affected, but milk urea concentration and fat:protein ratio were lower with lupines extruded at 150°C than with raw lupines. In the CML partition study, we observed that on average 26% of the apparently digested CML was excreted in urine, and a much lower proportion (0.63% on average) of the apparently digested CML was secreted in milk, with no differences among dietary treatments. In conclusion, we showed that the extrusion of white lupines without or with addition of reducing sugars numerically reduced enzymatic CP degradability, with limited effects on N partition, but increased milk yield and N use efficiency at the highest temperature of extrusion without addition of reducing sugars.

2.
Animal ; 16(12): 100674, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36434984

ABSTRACT

Compared with maize silage- and concentrate-based diets, herbage-based diets were repeatedly shown to favourably influence the milk fatty acid (FA) profile. However, it is unclear how the herbage feeding mode (grazing vs indoor green-feeding) and conservation (fresh herbage vs hay vs silage) modify the milk FA profile. Therefore, the aim of the present experiment was to investigate the effect of different herbage utilisation methods (including herbage feeding mode and herbage conservation method) on the ruminal biohydrogenation of dietary FA and the consequences on the milk FA composition in cows of two breeds (Holstein and Montbéliarde). Concomitant effects of botanical composition and phenological stage of the herbage on milk FA profile were controlled for by harvesting barn-dried hay and silage simultaneously as first cut from the same ryegrass-dominated grassland in a semi-mountainous region. Seven weeks later, the first regrowth of the same plot was used as fresh herbage, either grazed or fed indoor (indoor green-feeding). Twenty-four Montbéliarde and 24 Holstein cows were randomly allocated to four groups of 12 cows balanced by breed, parity, and milk yield. In a free-stall barn, three groups were given ad libitum access to hay, silage, or fresh herbage, respectively. The fourth group was strip-grazing. All cows were supplemented with 3 kg DM/day of the same energy-rich concentrate. After 2 weeks of adaptation to the forage, samples of forage, concentrate, milk, blood, and rumen fluid were collected. Fatty acid composition of forages, rumen fluid, and milk was analysed by gas chromatography. Haymaking reduced total FA content of the herbage, in particular that of linoleic acid (LA) and α-linolenic acid (ALA). Still, rumen fluid lipids of hay-fed cows had the highest proportion of rumenic acid, LA, ALA, and total polyunsaturated fatty acids (PUFAs). Milk fat from hay-fed cows had the highest proportion of LA, and the apparent transfer rates from feed to milk of LA and ALA were higher in hay-fed cows than in silage-fed cows. The proportion of PUFAs was highest in milk fat from grazing and indoor green-fed Montbéliarde cows and lowest in silage-fed cows of both breeds. In conclusion, the herbage utilisation method affects the ruminal biohydrogenation of LA and ALA, whereby herbage drying particularly increases their transfer from herbage to milk.


Subject(s)
Fatty Acids , Milk , Female , Animals , Cattle , Fatty Acids/analysis , Milk/chemistry , Rumen/chemistry , Lactation , Plant Breeding , Diet/veterinary , Linoleic Acid/pharmacology , Silage/analysis , Fatty Acids, Unsaturated/analysis
3.
J Dairy Sci ; 104(5): 5285-5302, 2021 May.
Article in English | MEDLINE | ID: mdl-33685688

ABSTRACT

In European countries, silage-free feeding is an ancient tradition and has a particularly positive reputation among consumers. In the present study, we compared grass-based forages from the same plot conserved as hay or silage or fed fresh either on pasture or indoors, and we evaluated the differences in sensory properties of milk and uncooked pressed cheese. All herbage from the first cut of a grassland dominated by perennial ryegrass was harvested on the same day and preserved either as hay or silage. The first regrowth of the same plot was used for strip grazing or green feeding indoors. Balanced by breed, 24 Montbéliarde and 24 Holstein cows were allocated to the 4 treatments. Apart from the forages, the late-lactation cows received 3 kg/d of dry matter from concentrate. After 2 wk of dietary adaptation, the bulk milk of 3 subgroups, each with 4 cows, was collected. Part of the milk was pasteurized, and part was left raw and partly transformed to small-sized Cantal-type cheese ripened for 9 wk. Milk and cheese underwent descriptive sensory analysis by a trained sensory panel, as well as analyses of physicochemical traits. Volatile organic compounds of the cheeses were also analyzed. Raw and pasteurized milk from hay-fed cows had less intense odors of cooked milk, cream, and barnyard than milk from grazing cows, whereby the effect of pasteurization did not differ between herbage utilization methods. Cheeses obtained from cows fed fresh herbage (grazing and indoors) were clearly yellower than cheeses from silage- and hay-fed cows, which coincided with the color intensity perceived by the panelists. Moreover, cheeses from cows fed fresh herbage had more intense barnyard and dry fruit flavors, were perceived as creamier and having less lactic odor, and exhibited more fat exudation than those from cows fed conserved herbage. Only a few differences were observed in milk and cheeses from hay-fed compared with silage-fed cows, and those differences were far less pronounced than those of milk and cheeses from cows fed fresh herbage. In conclusion, the present study did not substantiate assumptions of clear sensory differences of milk and uncooked pressed cheese from hay-fed compared with silage-fed cows. For the first time, this study reports that the global flavor intensity of cheeses from indoor green-fed cows is similar to that of cheeses derived from cows fed conserved forages, whereas cheeses from grazing cows have the greatest global flavor intensity.


Subject(s)
Cheese , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Europe , Female , Lactation , Milk , Plant Breeding , Silage/analysis
4.
J Dairy Sci ; 103(12): 11349-11362, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33041025

ABSTRACT

The demand for protein sources alternative to soybean meal for supplementing forages low in metabolizable protein is large. The suitability of spirulina (Arthrospira platensis), a fast growing and resource-efficient blue-green microalga, as a source of metabolizable protein for dairy cows is known, but its effects on milk antioxidants and sensory properties were never investigated. Twelve cows were allocated to 2 groups and fed hay-based diets complemented with sugar beet pulp and wheat flakes in individual feeding troughs. The N content per kilogram of DM was equivalent between the 2 diets. Diet of 1 group was supplemented with 5% spirulina; the second group was supplemented with 6% soybean meal (control). After an adaptation period of 15 d, data were collected, and feed, milk, blood, and rumen fluid were sampled. Feeds were analyzed for proximate contents, and blood plasma was analyzed for total antioxidant capacity and antioxidant contents (tocopherol, phenols). Milk samples were analyzed for fatty acid profile, coagulation properties, color, and contents of fat, protein, lactose, total phenols, lipophilic vitamins, and provitamins (e.g., ß-carotene). Triangle tests were performed by a trained sensory panel on 6 homogenized and pasteurized bulk milk samples per treatment. The substitution of soybean meal by spirulina in the diet did not affect feed intake, milk yield, milk fat, protein, or lactose contents compared with the control group. However, the milk from the spirulina-fed cows had a higher content of ß-carotene (0.207 vs. 0.135 µg/mL) and was more yellow (b* index: 14.9 vs. 13.8). Similar to the spirulina lipids but far less pronounced, the milk fat from the spirulina-fed cows had a higher proportion of γ-linolenic acid (0.057 vs. 0.038% of fatty acid methyl esters) compared with milk fat from soybean meal-fed cows. Also trans-11 C18:1 (vaccenic acid) and other C18:1 trans isomers were elevated, but otherwise the fatty acid profile resembled that of cows fed the control diet. No sensory difference was found between milk from the 2 experimental groups. Furthermore, we observed no effects of substituting soybean meal by spirulina on total antioxidant capacity, α-tocopherol and total phenols in blood and milk. Effects on rumen fluid characteristics were minor. In conclusion, spirulina seems to be a promising protein source for dairy cows with certain improvements in nutritionally favorable constituents in milk and without side-effects on animal performance in the short term.


Subject(s)
Animal Feed/analysis , Milk/chemistry , Spirulina , Animals , Cattle , Diet/veterinary , Dietary Supplements/analysis , Fatty Acids/analysis , Female , Lactation/drug effects , Lactose/analysis , Milk/standards , Rumen/metabolism , Glycine max , Taste , Vitamins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...