Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37686385

ABSTRACT

Sialidases remove terminal sialic acids residues from the non-reducing ends of glycoconjugates. They have been recognized as catabolic enzymes that work within different subcellular compartments and can ensure the proper turn-over of glycoconjugates. Four mammalian sialidases (NEU1-4) exist, with different subcellular localization, pH optimum and substrate specificity. In zebrafish, seven different sialidases, with high homology to mammalian counterparts, have been identified. Zebrafish Neu3.2 is similar to the human cytosolic sialidase NEU2, which is involved in skeletal muscle differentiation and exhibits a broad substrate specificity toward gangliosides and glycoproteins. In zebrafish neu3.2, mRNA is expressed during somite development, and its enzymatic activity has been detected in the skeletal muscle and heart of adult animals. In this paper, 1-4-cell-stage embryos injected with neu3.2 splice-blocking morpholino showed severe embryonic defects, mainly in somites, heart and anterior-posterior axis formation. Myog and myod1 expressions were altered in morphants, and impaired musculature formation was associated with a defective locomotor behavior. Finally, the co-injection of Neu2 mouse mRNA in morphants rescued the phenotype. These data are consistent with the involvement of cytosolic sialidase in pathologies related to muscle formation and support the validity of the model to investigate the pathogenesis of the diseases.


Subject(s)
Muscle Development , Neuraminidase , Zebrafish Proteins , Zebrafish , Animals , Down-Regulation , Muscle Development/genetics , Muscle, Skeletal , Neuraminidase/genetics , Zebrafish Proteins/genetics
2.
Int J Mol Sci ; 22(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34639177

ABSTRACT

In this paper, we report the metabolic characterization of two foci, F1 and F3, obtained at the end of Cell Transformation Assay (CTA), performed by treating C3H10T1/2Cl8 mouse embryo fibroblasts with 1 µM CdCl2 for 24 h. The elucidation of the cadmium action mechanism can be useful both to improve the in vitro CTA and to yield insights into carcinogenesis. The metabolism of the two foci was investigated through Seahorse and enzyme activity assays; mitochondria were studied in confocal microscopy and reactive oxygen species were detected by flow cytometry. The results showed that F1 focus has higher glycolytic and TCA fluxes compared to F3 focus, and a more negative mitochondrial membrane potential, so that most ATP synthesis is performed through oxidative phosphorylation. Confocal microscopy showed mitochondria crowded in the perinuclear region. On the other hand, F3 focus showed lower metabolic rates, with ATP mainly produced by glycolysis and damaged mitochondria. Overall, our results showed that cadmium treatment induced lasting metabolic alterations in both foci. Triggered by the loss of the Pasteur effect in F1 focus and by mitochondrial impairment in F3 focus, these alterations lead to a loss of coordination among glycolysis, TCA and oxidative phosphorylation, which leads to malignant transformation.


Subject(s)
Cadmium/toxicity , Carcinogenesis/pathology , Glycolysis , Mitochondria/pathology , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Animals , Autophagy , Carcinogenesis/chemically induced , Carcinogenesis/metabolism , Cells, Cultured , In Vitro Techniques , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C3H , Mitochondria/drug effects , Mitochondria/metabolism
3.
Biochimie ; 187: 57-66, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34022291

ABSTRACT

Zebrafish encodes several sialidases belonging to the NEU3 group, the plasma membrane-associated member of the family with high specificity toward ganglioside substrates. Neu3.1, Neu3.2 and Neu 3.3 have been expressed in E. coli and purified using the pGEX-2T expression system. Although all the enzymes are expressed by bacterial cells, Neu3.1 formed insoluble aggregates that hampered its purification. Neu3.2 and Neu3.3 formed oligomers as demonstrated by gel filtration chromatography experiments. Actually, the first formed a trimer whereas the second a pentamer. Intriguingly, despite relevant degree of sequence identity and similarity, the two enzymes showed peculiar substrate specificities toward gangliosides other than GM3, two glycoproteins and two forms of sialyllactose. Using molecular modelling and the crystal structure of the human cytosolic sialidase NEU2 as a template, the 3D models of the sialidases from zebrafish have been generated. As expected, the 3D models showed the typical six blade beta-propeller typical of sialidases, with an overall highly conserved active site architecture. The differences among the three zebrafish enzymes and human NEU2 are mainly located in the loops connecting the antiparallel beta strands of the propeller core. These portions of the proteins are probably responsible for the differences observed in substrate specificities, as well as in the different subcellular localization and aggregation features observed in solution. Finally, the in silico analysis of RNA-Seq data evidenced a peculiar expression profile of the three genes during embryogenesis, suggesting different roles of these sialidases during development.


Subject(s)
Neuraminidase/chemistry , Protein Multimerization , Zebrafish Proteins/chemistry , Zebrafish , Animals , Humans , Neuraminidase/genetics , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Zebrafish Proteins/genetics
4.
Glycobiology ; 27(10): 938-946, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28922741

ABSTRACT

Sialic acid acetylesterase (SIAE) removes acetyl moieties from the carbon 9 and 4 hydroxyl groups of sialic acid and recently a debate has been opened on its association to autoimmunity. Trying to get new insights on this intriguing enzyme we have studied siae in zebrafish (Danio rerio). In this teleost siae encodes for a polypeptide with a high degree of sequence identity to human and mouse counterparts. Zebrafish Siae behavior upon transient expression in COS7 cells is comparable to human enzyme concerning pH optimum of enzyme activity, subcellular localization and glycosylation. In addition, and as already observed in case of human SIAE, the glycosylated form of the enzyme from zebrafish is released into the culture media. During embryogenesis, in situ hybridization experiments demonstrate that siae transcript is always detectable during development, with a more specific expression in the central nervous system, in pronephric ducts and liver in the more advanced stages of the embryo development. In adult fish an increasing amount of siae mRNA is detectable in heart, eye, muscle, liver, brain, kidney and ovary. These results provide novel information about Siae and point out zebrafish as animal model to better understand the biological role(s) of this rather puzzling enzyme in vertebrates, regarding immune system function and the development of central nervous system.


Subject(s)
Acetylesterase/metabolism , Genome , Zebrafish Proteins/metabolism , Acetylesterase/chemistry , Acetylesterase/genetics , Animals , COS Cells , Chlorocebus aethiops , Gene Expression Regulation, Developmental , Humans , Kidney/metabolism , Liver/metabolism , Nervous System/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Nucleic Acid , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
5.
Sci Rep ; 6: 32474, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27581768

ABSTRACT

To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species.


Subject(s)
Genome , Response Elements , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Zebrafish/genetics , Animals , Axin Protein/genetics , Axin Protein/metabolism , Base Sequence , Binding Sites , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Evolution, Molecular , Gene Expression Regulation , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , Sequence Alignment , Signal Transduction , TNF Receptor-Associated Factor 4/genetics , TNF Receptor-Associated Factor 4/metabolism , Tumor Suppressor Protein p53/metabolism , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
PLoS One ; 7(10): e46642, 2012.
Article in English | MEDLINE | ID: mdl-23118857

ABSTRACT

Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.


Subject(s)
Alu Elements/genetics , Long Interspersed Nucleotide Elements/genetics , Tumor Suppressor Protein p53 , Zebrafish/genetics , Animals , Binding Sites , Evolution, Molecular , Gene Expression Regulation , Genome , Humans , Morphogenesis/genetics , Neurons/cytology , Neurons/metabolism , Phylogeny , Protein Binding , Tumor Suppressor Protein p53/genetics
7.
Biochem J ; 408(2): 211-9, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17708748

ABSTRACT

Sialidase NEU3 is also known as the plasma-membrane-associated form of mammalian sialidases, exhibiting a high substrate specificity towards gangliosides. In this respect, sialidase NEU3 modulates cell-surface biological events and plays a pivotal role in different cellular processes, including cell adhesion, recognition and differentiation. At the moment, no detailed studies concerning the subcellular localization of NEU3 are available, and the mechanism of its association with cellular membranes is still unknown. In the present study, we have demonstrated that sialidase NEU3, besides its localization at the plasma membrane, is present in intracellular structures at least partially represented by a subset of the endosomal compartment. Moreover, we have shown that NEU3 present at the plasma membrane is internalized and locates then to the recycling endosomal compartment. The enzyme is associated with the outer leaflet of the plasma membrane, as shown by selective cell-surface protein biotinylation. This evidence is in agreement with the ability of NEU3 to degrade gangliosides inserted into the plasma membrane of adjacent cells. Moreover, the mechanism of the protein association with the lipid bilayer was elucidated by carbonate extraction. Under these experimental conditions, we have succeeded in solubilizing NEU3, thus demonstrating that the enzyme is a peripheral membrane protein. In addition, Triton X-114 phase separation demonstrates further the hydrophilic nature of the protein. Overall, these results provide important information about the biology of NEU3, the most studied member of the mammalian sialidase family.


Subject(s)
Cell Membrane/enzymology , Endosomes/enzymology , Membrane Proteins/metabolism , Neuraminidase/metabolism , Animals , COS Cells , Cell Membrane/metabolism , Chlorocebus aethiops , Endosomes/metabolism , HeLa Cells , Humans , Membrane Proteins/chemistry , Neuraminidase/chemistry
8.
Biochem J ; 408(3): 395-406, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17708749

ABSTRACT

Sialidases remove sialic acid residues from various sialo-derivatives. To gain further insights into the biological roles of sialidases in vertebrates, we exploited zebrafish (Danio rerio) as an animal model. A zebrafish transcriptome- and genome-wide search using the sequences of the human NEU polypeptides as templates revealed the presence of seven different genes related to human sialidases. neu1 and neu4 are the putative orthologues of the mammalian sialidases NEU1 and NEU4 respectively. Interestingly, the remaining genes are organized in clusters located on chromosome 21 and are all more closely related to mammalian sialidase NEU3. They were thus named neu3.1, neu3.2, neu3.3, neu3.4 and neu3.5. Using RT-PCR (reverse transcription-PCR) we detected transcripts for all genes, apart from neu3.4, and whole-mount in situ hybridization experiments show a localized expression pattern in gut and lens for neu3.1 and neu4 respectively. Transfection experiments in COS7 (monkey kidney) cells demonstrate that Neu3.1, Neu3.2, Neu3.3 and Neu4 zebrafish proteins are sialidase enzymes. Neu3.1, Neu3.3 and Neu4 are membrane-associated and show a very acidic pH optimum below 3.0, whereas Neu3.2 is a soluble sialidase with a pH optimum of 5.6. These results were further confirmed by subcellular localization studies carried out using immunofluorescence. Moreover, expression in COS7 cells of these novel zebrafish sialidases (with the exception of Neu3.2) induces a significant modification of the ganglioside pattern, consistent with the results obtained with membrane-associated mammalian sialidases. Overall, the redundancy of sialidases together with their expression profile and their activity exerted on gangliosides of living cells indicate the biological relevance of this class of enzymes in zebrafish.


Subject(s)
Isoenzymes/metabolism , Neuraminidase/metabolism , Animals , Base Sequence , COS Cells , Chlorocebus aethiops , Cloning, Molecular , DNA Primers , DNA, Complementary , In Situ Hybridization , Isoenzymes/genetics , Molecular Sequence Data , Neuraminidase/genetics , Reverse Transcriptase Polymerase Chain Reaction , Subcellular Fractions/enzymology , Zebrafish
9.
Gene ; 345(2): 173-82, 2005 Jan 31.
Article in English | MEDLINE | ID: mdl-15716113

ABSTRACT

The transport of metabolites across the inner mitochondrial membrane is mediated by a large superfamily of mitochondrial solute carrier (MSC) proteins. A novel human member of the MSC gene family named SLC25A23, with homologs in mammalian and non-mammalian species has been recently identified together with two close paralogs, SLC25A24 and SLC25A25. These genes encode the human isoforms of the ATP-Mg/Pi carrier described in whole mitochondria. We report here the cellular expression and alternative splicing of SLC25A23. The gene encodes a 468 amino acids polypeptide, named SCaMC-3, with a bipartite structure typical of calcium-binding mitochondrial solute carrier (CaMSC) proteins. The amino-terminal portion harbors three canonical EF-hand calcium-binding domains while the carboxyl-terminal portion of SCaMC-3 has the characteristic features of the MSC superfamily. Northern blot analysis reveals the presence of the transcript in brain, heart, skeletal muscle, liver and small intestine. The SLC25A23 gene undergoes alternative splicing suggesting a modular nature of the encoded product. Three out of four putative protein isoforms lack a significant portion of the third mitochondrial carrier signature. The most common SCaMC-3 isoform shows a mitochondrial subcellular localization when transfected in HeLa cells and is able to bind calcium by Ca(2+)-dependent mobility shift assays. We believe that our study will contribute to a better knowledge of this family of mitochondrial carriers.


Subject(s)
Antiporters/genetics , Alternative Splicing , Antiporters/chemistry , Calcium-Binding Proteins , Cloning, Molecular , HeLa Cells , Humans , Mitochondrial Proteins/genetics , Tissue Distribution , Transfection
10.
Kidney Int ; 66(4): 1453-64, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15458438

ABSTRACT

BACKGROUND: The human amino acid transporter asc-1 (SLC7A10) exhibits substrate selectivity for small neutral amino acids, including cysteine, is expressed in kidney, is located close to the cystinuria B gene and presents sequence variants (e.g., E112D) in some cystinuria patients. We have cloned human asc-1, assessed its transport characteristics, localized its expression in kidney, searched for mutations in cystinuria patients, and tested the transport function of variant E112D. METHODS: We used an EST-based homology cloning strategy. Transport characteristics of asc-1 were assessed by coexpression with 4F2hc in Xenopus oocytes and HeLa cells. Localization of asc-1 mRNA in kidney was assessed by in situ hybridization. Exons and intron-exon boundaries were polymerase chain reaction (PCR)-amplified from blood cell DNA and mutational screening was performed by single-stranded conformational polymorphism (SSCP). RESULTS: Asc-1 reaches the plasma membrane in HeLa cells, unlike in oocytes, most probably by interaction with endogenous 4F2hc and presents similar transport characteristics to those in oocytes coexpressing asc-1/4F2hc. Asc-1 mediates a substantial efflux of alanine in a facilitated diffusion mode of transport. Expression of asc-1 mRNA localized to Henle's loop, distal tubules, and collecting ducts. Finally, SLC7A10 polymorphisms were identified in cystinuria probands and the SLC7A10 sequence variant E112D showed full transport activity. CONCLUSION: The lack of expression of asc-1 in the proximal tubule indicates that it plays no role in the bulk of renal reabsorption of amino acids. No mutations causing cystinuria have been found in SLC7A10. The facilitated diffusion mode of transport and the expression in distal nephron suggest a role for asc-1 in osmotic adaptation.


Subject(s)
Amino Acid Transport System y+/genetics , Cystinuria/genetics , Cystinuria/physiopathology , Kidney Tubules, Proximal/physiology , Amino Acid Transport System y+/metabolism , Amino Acids/metabolism , Animals , Gene Expression , HeLa Cells , Humans , Mutation , Oocytes/physiology , RNA, Messenger/analysis , Water-Electrolyte Balance/physiology , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...