Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
BMC Vet Res ; 20(1): 216, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773480

ABSTRACT

BACKGROUND: In this study, we investigated the prevalence of respiratory viruses in four Hybrid Converter Turkey (Meleagris gallopavo) farms in Egypt. The infected birds displayed severe respiratory signs, accompanied by high mortality rates, suggesting viral infections. Five representative samples from each farm were pooled and tested for H5 & H9 subtypes of avian influenza viruses (AIVs), Avian Orthoavulavirus-1 (AOAV-1), and turkey rhinotracheitis (TRT) using real-time RT-PCR and conventional RT-PCR. Representative tissue samples from positive cases were subjected to histopathology and immunohistochemistry (IHC). RESULTS: The PCR techniques confirmed the presence of AOAV-1 and H5 AIV genes, while none of the tested samples were positive for H9 or TRT. Microscopic examination of tissue samples revealed congestion and hemorrhage in the lungs, liver, and intestines with leukocytic infiltration. IHC revealed viral antigens in the lungs, liver, and intestines. Phylogenetic analysis revealed that H5 HA belonged to 2.3.4.4b H5 sublineage and AOAV-1 belonged to VII 1.1 genotype. CONCLUSIONS: The study highlights the need for proper monitoring of hybrid converter breeds for viral diseases, and the importance of vaccination programs to prevent unnecessary losses. To our knowledge, this is the first study that reports the isolation of AOAV-1 and H5Nx viruses from Hybrid Converter Turkeys in Egypt.


Subject(s)
Influenza in Birds , Phylogeny , Poultry Diseases , Animals , Poultry Diseases/virology , Poultry Diseases/epidemiology , Poultry Diseases/pathology , Influenza in Birds/virology , Influenza in Birds/pathology , Influenza in Birds/epidemiology , Egypt/epidemiology , Turkeys/virology , Influenza A virus/isolation & purification , Influenza A virus/genetics , Influenza A virus/classification
2.
Pathogens ; 10(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34959552

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) with H5 and H7 hemagglutinin (HA) subtypes are derived from their low pathogenic counterparts following the acquisition of multiple basic amino acids in their HA cleavage site. It has been suggested that consecutive adenine residues and a stem-loop structure in the viral RNA region that encodes the cleavage site are essential for the acquisition of the polybasic cleavage site. By using a reporter assay to detect non-templated nucleotide insertions, we found that insertions more frequently occurred in the RNA region (29 nucleotide-length) encoding the cleavage site of an H5 HA gene that was predicted to have a stem-loop structure containing consecutive adenines than in a mutated corresponding RNA region that had a disrupted loop structure with fewer adenines. In virus particles generated by using reverse genetics, nucleotide insertions that created additional codons for basic amino acids were found in the RNA region encoding the cleavage site of an H5 HA gene but not in the mutated RNA region. We confirmed the presence of virus clones with the ability to replicate without trypsin in a plaque assay and to cause lethal infection in chicks. These results demonstrate that the stem-loop structure containing consecutive adenines in HA genes is a key molecular determinant for the emergence of H5 HPAIVs.

3.
Sci Rep ; 11(1): 22977, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836987

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus that causes novel zoonotic diseases in Asian countries including China, Japan, South Korea, and Vietnam. In phleboviruses, viral proteins play a critical role in viral particle formation inside the host cells. Viral glycoproteins (GPs) and RNA-dependent RNA polymerase (RdRp) are colocalized in the Golgi apparatus and endoplasmic reticulum-Golgi intermediate compartment (ERGIC). The nucleocapsid (N) protein was widely expressed in the cytoplasm, even in cells coexpressing GP. However, the role of SFTSV N protein remains unclear. The subcellular localization of SFTSV structural proteins was investigated using a confocal microscope. Subsequently, minigenome and immunoprecipitation assays were carried out. The N protein interacts with viral RNA (vRNA) and further shows translational activity with RdRp which is L protein and localized in the ERGIC and Golgi apparatus when co-expressed with GP. On the other hand, mutant N protein did not interact with vRNA either localized in the ERGIC or Golgi apparatus. The interaction between the N protein of SFTSV and vRNA is important for the localization of viral proteins and viral assembly. This study provides useful insights into the life cycle of SFTSV, which will lead to the detection of antiviral targets.


Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Ribonucleoproteins/metabolism , Severe Fever with Thrombocytopenia Syndrome/metabolism , Viral Envelope Proteins/metabolism , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Nucleocapsid Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Ribonucleoproteins/genetics , Vero Cells , Viral Envelope Proteins/genetics
4.
Commun Biol ; 4(1): 686, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083749

ABSTRACT

In January 2020, the coronavirus disease was declared, by the World Health Organization as a global public health emergency. Recommendations from the WHO COVID Emergency Committee continue to support strengthening COVID surveillance systems, including timely access to effective diagnostics. Questions were raised about the validity of considering the RT-PCR as the gold standard in COVID-19 diagnosis. It has been suggested that a variety of methods should be used to evaluate advocated tests. Dogs had been successfully trained and employed to detect diseases in humans. Here we show that upon training explosives detection dogs on sniffing COVID-19 odor in patients' sweat, those dogs were able to successfully screen out 3249 individuals who tested negative for the SARS-CoV-2, from a cohort of 3290 individuals. Additionally, using Bayesian analysis, the sensitivity of the K9 test was found to be superior to the RT-PCR test performed on nasal swabs from a cohort of 3134 persons. Given its high sensitivity, short turn-around-time, low cost, less invasiveness, and ease of application, the detection dogs test lends itself as a better alternative to the RT-PCR in screening for SARS-CoV-2 in asymptomatic individuals.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Odorants , Working Dogs , Adult , Aged , Animals , Bayes Theorem , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/methods , COVID-19 Testing/economics , Dogs , Female , Humans , Male , Middle Aged , Odorants/analysis , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Smell , Young Adult
5.
Sci Rep ; 11(1): 2324, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504869

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) causes a zoonotic disease, Crimean-Congo hemorrhagic fever (CCHF) endemic in Africa, Asia, the Middle East, and Southeastern Europe. However, the prevalence of CCHF is not monitored in most of the endemic countries due to limited availability of diagnostic assays and biosafety regulations required for handling infectious CCHFV. In this study, we established a protocol to purify the recombinant CCHFV nucleoprotein (NP), which is antigenically highly conserved among multiple lineages/clades of CCHFVs and investigated its utility in an enzyme-linked immunosorbent assay (ELISA) to detect CCHFV-specific antibodies. The NP gene was cloned into the pCAGGS mammalian expression plasmid and human embryonic kidney 293 T cells were transfected with the plasmid. The expressed NP molecule was purified from the cell lysate using cesium-chloride gradient centrifugation. Purified NP was used as the antigen for the ELISA to detect anti-CCHFV IgG. Using the CCHFV NP-based ELISA, we efficiently detected CCHFV-specific IgG in anti-NP rabbit antiserum and CCHFV-infected monkey serum. When compared to the commercially available Blackbox CCHFV IgG ELISA kit, our assay showed equivalent performance in detecting CCHFV-specific IgG in human sera. These results demonstrate the usefulness of our CCHFV NP-based ELISA for seroepidemiological studies.


Subject(s)
Hemorrhagic Fever, Crimean/metabolism , Nucleoproteins/metabolism , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Hemorrhagic Fever, Crimean/blood , Hemorrhagic Fever, Crimean/genetics , Humans , Nucleoproteins/blood , Nucleoproteins/genetics , Plasmids/genetics , Seroepidemiologic Studies
6.
mBio ; 13(1): e0306021, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35164564

ABSTRACT

Like other human-pathogenic arenaviruses, Lujo virus (LUJV) is a causative agent of viral hemorrhagic fever in humans. LUJV infects humans with high mortality rates, but the susceptibilities of other animal species and the molecular determinants of its host specificity remain unknown. We found that mouse- and hamster-derived cell lines (NIH 3T3 and BHK, respectively) were less susceptible to a replication-incompetent recombinant vesicular stomatitis virus (Indiana) pseudotyped with the LUJV glycoprotein (GP) (VSVΔG*-LUJV/GP) than were human-derived cell lines (HEK293T and Huh7). To determine the cellular factors involved in the differential susceptibilities between the human and mouse cell lines, we focused on the CD63 molecule, which is required for pH-activated GP-mediated membrane fusion during LUJV entry into host cells. The exogenous introduction of human CD63, but not mouse or hamster CD63, into BHK cells significantly increased susceptibility to VSVΔG*-LUJV/GP. Using chimeric human-mouse CD63 proteins, we found that the amino acid residues at positions 141 to 150 in the large extracellular loop (LEL) region of CD63 were important for the cellular entry of VSVΔG*-LUJV/GP. By site-directed mutagenesis, we further determined that a phenylalanine at position 143 in human CD63 was the key residue for efficient membrane fusion and VSVΔG*-LUJV/GP infection. Our data suggest that the interaction of LUJV GP with the LEL region of CD63 is essential for cell susceptibility to LUJV, thus providing new insights into the molecular mechanisms underlying the cellular entry of LUJV and the host range restriction of this virus. IMPORTANCE Lujo virus (LUJV) infects humans with high mortality rates, but the host range of LUJV remains unknown. We found that rodent-derived cell lines were less susceptible to LUJV infection than were human-derived cell lines, and the differential susceptibilities were determined by the difference of CD63, the intercellular receptor of LUJV. We further identified an amino acid residue on human CD63 important for efficient LUJV infection. These results suggest that the interaction between LUJV glycoprotein and CD63 is one of the important factors determining the host range of LUJV. Our findings on the CD63-regulated susceptibilities of the cell lines to LUJV infection provide important information for the development of anti-LUJV drugs as well as the identification of natural hosts of LUJV. Importantly, our data support a concept explaining the molecular mechanism underlying viral tropisms controlled by endosomal receptors.


Subject(s)
Arenaviridae Infections , Arenavirus , Lujo virus , Humans , Animals , Lujo virus/metabolism , Host Specificity , HEK293 Cells , Arenaviridae Infections/pathology , Carrier Proteins/metabolism , Virus Internalization , Amino Acids/metabolism
7.
Microorganisms ; 8(10)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027954

ABSTRACT

Lloviu virus (LLOV), a bat-derived filovirus that is phylogenetically distinct from human pathogenic filoviruses such as Ebola virus (EBOV) and Marburg virus (MARV), was discovered in Europe. However, since infectious LLOV has never been isolated, the biological properties of this virus remain poorly understood. We found that vesicular stomatitis virus (VSV) pseudotyped with the glycoprotein (GP) of LLOV (VSV-LLOV) showed higher infectivity in one bat (Miniopterus sp.)-derived cell line than in the other bat-derived cell lines tested, which was distinct from the tropism of VSV pseudotyped with EBOV (VSV-EBOV) and MARV GPs. We then focused on the interaction between GP and Niemann-Pick C1 (NPC1) protein, one of the cellular receptors of filoviruses. We introduced the Miniopterus bat and human NPC1 genes into NPC1-knockout Vero E6 cells and their susceptibilities to the viruses were compared. The cell line expressing the bat NPC1 showed higher susceptibility to VSV-LLOV than that expressing human NPC1, whereas the opposite preference was seen for VSV-EBOV. Using a site-directed mutagenesis approach, amino acid residues involved in the differential tropism were identified in the NPC1 and GP molecules. Our results suggest that the interaction between GP and NPC1 is an important factor in the tropism of LLOV to a particular bat species.

8.
J Virol ; 95(1)2020 12 09.
Article in English | MEDLINE | ID: mdl-33055251

ABSTRACT

Protective immunity against influenza A viruses (IAVs) generally depends on antibodies to the major envelope glycoprotein, hemagglutinin (HA), whose antigenicity is distinctive among IAV subtypes. On the other hand, the matrix 2 (M2) protein is antigenically highly conserved and has been studied as an attractive vaccine antigen to confer cross-protective immunity against multiple subtypes of IAVs. However, antiviral mechanisms of M2-specific antibodies are not fully understood. Here, we report the molecular basis of antiviral activity of an M2-specific monoclonal antibody (MAb), rM2ss23. We first found that rM2ss23 inhibited A/Aichi/2/1968 (H3N2) (Aichi) but not A/PR/8/1934 (H1N1) (PR8) replication. rM2ss23 altered the cell surface distribution of M2, likely by cross-linking the molecules, and interfered with the colocalization of HA and M2, resulting in reduced budding of progeny viruses. However, these effects were not observed for another strain, PR8, despite the binding capacity of rM2ss23 to PR8 M2. Interestingly, HA was also involved in the resistance of PR8 to rM2ss23. We also found that two amino acid residues at positions 54 and 57 in the M2 cytoplasmic tail were critical for the insensitivity of PR8 to rM2ss2. These findings suggest that the disruption of the M2-HA colocalization on infected cells and subsequent reduction of virus budding is one of the principal mechanisms of antiviral activity of M2-specific antibodies and that anti-M2 antibody-sensitive and -resistant IAVs have different properties in the interaction between M2 and HA.IMPORTANCE Although the IAV HA is the major target of neutralizing antibodies, most of the antibodies are HA subtype specific, restricting the potential of HA-based vaccines. On the contrary, the IAV M2 protein has been studied as a vaccine antigen to confer cross-protective immunity against IAVs with multiple HA subtypes, since M2 is antigenically conserved. Although a number of studies highlight the protective role of anti-HA neutralizing and nonneutralizing antibodies, precise information on the molecular mechanism of action of M2-specific antibodies is still obscure. In this study, we found that an anti-M2 antibody interfered with the HA-M2 association, which is important for efficient budding of progeny virus particles from infected cells. The antiviral activity was IAV strain dependent despite the similar binding capacity of the antibody to M2, and, interestingly, HA was involved in susceptibility to the antibody. Our data provide a novel mechanism underlying antiviral activity of M2-specific antibodies.


Subject(s)
Antibodies, Viral/pharmacology , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Viral Matrix Proteins/immunology , Amino Acids , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Viral/immunology , Antiviral Agents/immunology , Dogs , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/immunology , Madin Darby Canine Kidney Cells , Mutation , Protein Binding/drug effects , Species Specificity , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virus Release/drug effects
9.
Antiviral Res ; 183: 104932, 2020 11.
Article in English | MEDLINE | ID: mdl-32946918

ABSTRACT

Ebolaviruses and marburgviruses, members of the family Filoviridae, are known to cause fatal diseases often associated with hemorrhagic fever. Recent outbreaks of Ebola virus disease in West African countries and the Democratic Republic of the Congo have made clear the urgent need for the development of therapeutics and vaccines against filoviruses. Using replication-incompetent vesicular stomatitis virus (VSV) pseudotyped with the Ebola virus (EBOV) envelope glycoprotein (GP), we screened a chemical compound library to obtain new drug candidates that inhibit filoviral entry into target cells. We discovered a biaryl sulfonamide derivative that suppressed in vitro infection mediated by GPs derived from all known human-pathogenic filoviruses. To determine the inhibitory mechanism of the compound, we monitored each entry step (attachment, internalization, and membrane fusion) using lipophilic tracer-labeled ebolavirus-like particles and found that the compound efficiently blocked fusion between the viral envelope and the endosomal membrane during cellular entry. However, the compound did not block the interaction of GP with the Niemann-Pick C1 protein, which is believed to be the receptor of filoviruses. Using replication-competent VSVs pseudotyped with EBOV GP, we selected escape mutants and identified two EBOV GP amino acid residues (positions 47 and 66) important for the interaction with this compound. Interestingly, these amino acid residues were located at the base region of the GP trimer, suggesting that the compound might interfere with the GP conformational change required for membrane fusion. These results suggest that this biaryl sulfonamide derivative is a novel fusion inhibitor and a possible drug candidate for the development of a pan-filovirus therapeutic.


Subject(s)
Filoviridae/drug effects , Sulfonamides/chemistry , Sulfonamides/pharmacology , Virus Internalization/drug effects , Animals , Chlorocebus aethiops , Drug Discovery , Ebolavirus/drug effects , Filoviridae/classification , Filoviridae Infections/drug therapy , Filoviridae Infections/virology , HEK293 Cells , Hemorrhagic Fever, Ebola/drug therapy , Humans , Marburg Virus Disease/drug therapy , Marburgvirus/drug effects , Receptors, Virus/metabolism , Vero Cells
10.
Viruses ; 12(7)2020 07 20.
Article in English | MEDLINE | ID: mdl-32698456

ABSTRACT

The influenza A virus (IAV) matrix-2 (M2) protein is an antigenically conserved viral envelope protein that plays an important role in virus budding together with another envelope protein, hemagglutinin (HA). An M2-specific mouse monoclonal IgG antibody, rM2ss23, which binds to the ectodomain of the M2 protein, has been shown to be a non-neutralizing antibody, but inhibits plaque formation of IAV strains. In this study, we generated chimeric rM2ss23 (ch-rM2ss23) IgG and IgA antibodies with the same variable region and compared their antiviral activities. Using gel chromatography, ch-rM2ss23 IgA were divided into three antibody subsets: monomeric IgA (m-IgA), dimeric IgA (d-IgA), and trimeric and tetrameric IgA (t/q-IgA). We found that t/q-IgA had a significantly higher capacity to reduce the plaque size of IAVs than IgG and m-IgA, most likely due to the decreased number of progeny virus particles produced from infected cells. Interestingly, HA-M2 colocalization was remarkably reduced on the infected cell surface in the presence of ch-rM2ss23 antibodies. These results indicate that anti-M2 polymeric IgA restricts IAV budding more efficiently than IgG and suggest a role of anti-M2 IgA in cross-protective immunity to IAVs.


Subject(s)
Immunoglobulin A/immunology , Immunoglobulin G/immunology , Influenza A virus/immunology , Viral Matrix Proteins/immunology , Animals , Blotting, Western , Cross Reactions/immunology , Dogs , Enzyme-Linked Immunosorbent Assay , Humans , Influenza A virus/ultrastructure , Madin Darby Canine Kidney Cells/virology , Mice , Microscopy, Electron, Transmission , Neutralization Tests , Real-Time Polymerase Chain Reaction , Recombinant Proteins , Surface Plasmon Resonance , Viral Plaque Assay
11.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32269119

ABSTRACT

IgA antibodies on mucosal surfaces are known to play an important role in protection from influenza A virus (IAV) infection and are believed to be more potent than IgG for cross-protective immunity against IAVs of multiple hemagglutinin (HA) subtypes. However, in general, neutralizing antibodies specific to HA are principally HA subtype specific. Here, we focus on nonneutralizing but broadly cross-reactive HA-specific IgA antibodies. Recombinant IgG, monomeric IgA (mIgA), and polymeric secretory IgA (pSIgA) antibodies were generated based on the sequence of a mouse anti-HA monoclonal antibody (MAb) 5A5 that had no neutralizing activity but showed broad binding capacity to multiple HA subtypes. While confirming that there was no neutralizing activity of the recombinant MAbs against IAV strains A/Puerto Rico/8/1934 (H1N1), A/Adachi/2/1957 (H2N2), A/Hong Kong/483/1997 (H5N1), A/shearwater/South Australia/1/1972 (H6N5), A/duck/England/1/1956 (H11N6), and A/duck/Alberta/60/1976 (H12N5), we found that pSIgA, but not mIgA and IgG, significantly reduced budding and release of most of the viruses from infected cells. Electron microscopy demonstrated that pSIgA deposited newly produced virus particles on the surfaces of infected cells, most likely due to tethering of virus particles. Furthermore, we found that pSIgA showed significantly higher activity to reduce plaque sizes of the viruses than IgG and mIgA. These results suggest that nonneutralizing pSIgA reactive to multiple HA subtypes may play a role in intersubtype cross-protective immunity against IAVs.IMPORTANCE Mucosal immunity represented by pSIgA plays important roles in protection from IAV infection. Furthermore, IAV HA-specific pSIgA antibodies are thought to contribute to cross-protective immunity against multiple IAV subtypes. However, the mechanisms by which pSIgA exerts such versatile antiviral activity are not fully understood. In this study, we generated broadly cross-reactive recombinant IgG and pSIgA having the same antigen-recognition site and compared their antiviral activities in vitro These recombinant antibodies did not show "classical" neutralizing activity, whereas pSIgA, but not IgG, significantly inhibited the production of progeny virus particles from infected cells. Plaque formation was also significantly reduced by pSIgA, but not IgG. These effects were seen in infection with IAVs of several different HA subtypes. Based on our findings, we propose an antibody-mediated host defense mechanism by which mucosal immunity may contribute to broad cross-protection from IAVs of multiple HA subtypes, including viruses with pandemic potential.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin A/immunology , Influenza A virus/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Cross Protection , Cross Reactions , Dogs , Female , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunity, Mucosal , Immunoglobulin A/genetics , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H2N2 Subtype/genetics , Influenza A Virus, H2N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Neutralization Tests , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Virus Release
12.
Cell Rep ; 30(2): 308-319.e5, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31940478

ABSTRACT

Fruit bats are suspected to be natural hosts of filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV). Interestingly, however, previous studies suggest that these viruses have different tropisms depending on the bat species. Here, we show a molecular basis underlying the host-range restriction of filoviruses. We find that bat-derived cell lines FBKT1 and ZFBK13-76E show preferential susceptibility to EBOV and MARV, respectively, whereas the other bat cell lines tested are similarly infected with both viruses. In FBKT1 and ZFBK13-76E, unique amino acid (aa) sequences are found in the Niemann-Pick C1 (NPC1) protein, one of the cellular receptors interacting with the filovirus glycoprotein (GP). These aa residues, as well as a few aa differences between EBOV and MARV GPs, are crucial for the differential susceptibility to filoviruses. Taken together, our findings indicate that the heterogeneity of bat NPC1 orthologs is an important factor controlling filovirus species-specific host tropism.


Subject(s)
Filoviridae/genetics , Niemann-Pick C1 Protein/metabolism , Tropism/genetics , Amino Acid Sequence , Animals , Chiroptera , Humans , Models, Molecular
13.
Sci Rep ; 9(1): 1158, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718752

ABSTRACT

Two novel influenza A virus-like genomes were detected in fruit bats in Central and South America. However, the biological properties of these bat-derived influenza viruses (BatIVs) are still largely unknown since infectious viral particles have never been isolated from the infected host species. In this study, a reverse genetics approach was used to generate infectious BatIV particles entirely from plasmids encoding full-length sequences in eight gene segments. We inoculated BatIV particles into various cell cultures including bat-derived cell lines and found that BatIVs infected particular bat-derived cells efficiently but not the other cell lines tested. Reassortant viruses between the two BatIVs were also successfully generated and their replication in the susceptible bat cell lines was confirmed. These findings suggest a limited host range and reassortment potential of BatIVs in nature, providing fundamental information for understanding of the ecology of BatIVs.


Subject(s)
Chiroptera/virology , Influenza A virus , Orthomyxoviridae Infections/virology , Reassortant Viruses , Animals , Cell Line , Chlorocebus aethiops , Dogs , Host Specificity , Humans , Influenza A virus/isolation & purification , Influenza A virus/pathogenicity , Influenza A virus/physiology , Quail , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Reassortant Viruses/physiology , South America , Virus Replication
14.
J Infect Dis ; 218(suppl_5): S397-S402, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30010949

ABSTRACT

Niemann-Pick C1 (NPC1), a host receptor involved in the envelope glycoprotein (GP)-mediated entry of filoviruses into cells, is believed to be a major determinant of cell susceptibility to filovirus infection. It is known that proteolytically digested Ebola virus (EBOV) GP interacts with 2 protruding loops in domain C of NPC1. Using previously published structural data and the National Center for Biotechnology Information Single-Nucleotide Polymorphism (SNP) database, we identified 10 naturally occurring missense SNPs in human NPC1. To investigate whether these SNPs affect cell susceptibility to filovirus infection, we generated Vero E6 cell lines stably expressing NPC1 with SNP substitutions and compared their susceptibility to vesicular stomatitis virus pseudotyped with filovirus GPs and infectious EBOV. We found that some of the substitutions resulted in reduced susceptibility to filoviruses, as indicated by the lower titers and smaller plaque/focus sizes of the viruses. Our data suggest that human NPC1 SNPs may likely affect host susceptibility to filoviruses.


Subject(s)
Carrier Proteins/genetics , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/virology , Membrane Glycoproteins/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Niemann-Pick C1 Protein , Receptors, Virus/metabolism , Vero Cells , Viral Envelope Proteins/metabolism , Virus Internalization
15.
Int J Mol Sci ; 18(12)2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29215568

ABSTRACT

Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.


Subject(s)
Viral Matrix Proteins/metabolism , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza A virus/physiology , Protein Processing, Post-Translational , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virus Integration , Virus Release
16.
PLoS One ; 12(10): e0186450, 2017.
Article in English | MEDLINE | ID: mdl-29040311

ABSTRACT

It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-ß promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor.


Subject(s)
Ebolavirus/genetics , Host-Pathogen Interactions , Interferon-beta/antagonists & inhibitors , Nucleoproteins/genetics , RNA, Double-Stranded/genetics , Viral Core Proteins/genetics , Amino Acid Sequence , Animals , Chiroptera/virology , Ebolavirus/isolation & purification , Ebolavirus/metabolism , Gene Expression , Genes, Reporter , HEK293 Cells , Humans , Interferon-beta/genetics , Interferon-beta/immunology , Luciferases/genetics , Luciferases/metabolism , Nucleocapsid Proteins , Nucleoproteins/metabolism , Promoter Regions, Genetic , Protein Binding , RNA, Double-Stranded/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Viral Core Proteins/metabolism , Virus Replication
17.
mBio ; 8(1)2017 02 14.
Article in English | MEDLINE | ID: mdl-28196963

ABSTRACT

Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes.IMPORTANCE Influenza A viruses are divided into subtypes based on the antigenicity of the viral surface glycoproteins hemagglutinin (HA) and neuraminidase. Of the 16 HA subtypes (H1 to -16) maintained in waterfowl reservoirs of influenza A viruses, H5 and H7 viruses often become highly pathogenic through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been known since the 1980s, the genetic basis for nucleotide insertions has remained unclear. This study shows the potential role of the viral RNA secondary structure for nucleotide insertions and demonstrates a key mechanism explaining why the acquisition of the polybasic HA cleavage site is restricted to particular HA subtypes in nature. Our findings will contribute to better understanding of the ecology of influenza A viruses and will also be useful for the development of genetically modified vaccines against H5 and H7 influenza A viruses with increased stability.


Subject(s)
Genetic Predisposition to Disease , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , RNA, Viral/genetics , Adenine/chemistry , Animals , Chickens/virology , Guanine/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/classification , High-Throughput Nucleotide Sequencing , Influenza A Virus, H5N1 Subtype/chemistry , Influenza in Birds , RNA, Viral/chemistry , Virulence
18.
PLoS Pathog ; 12(12): e1006139, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28036370

ABSTRACT

Antibody-dependent enhancement (ADE) of Ebola virus (EBOV) infection has been demonstrated in vitro, raising concerns about the detrimental potential of some anti-EBOV antibodies. ADE has been described for many viruses and mostly depends on the cross-linking of virus-antibody complexes to cell surface Fc receptors, leading to enhanced infection. However, little is known about the molecular mechanisms underlying this phenomenon. Here we show that Fcγ-receptor IIa (FcγRIIa)-mediated intracellular signaling through Src family protein tyrosine kinases (PTKs) is required for ADE of EBOV infection. We found that deletion of the FcγRIIa cytoplasmic tail abolished EBOV ADE due to decreased virus uptake into cellular endosomes. Furthermore, EBOV ADE, but not non-ADE infection, was significantly reduced by inhibition of the Src family protein PTK pathway, which was also found to be important to promote phagocytosis/macropinocytosis for viral uptake into endosomes. We further confirmed a significant increase of the Src phosphorylation mediated by ADE. These data suggest that antibody-EBOV complexes bound to the cell surface FcγRIIa activate the Src signaling pathway that leads to enhanced viral entry into cells, providing a novel perspective for the general understanding of ADE of virus infection.


Subject(s)
Antibody-Dependent Enhancement/immunology , Hemorrhagic Fever, Ebola/immunology , Receptors, IgG/immunology , Signal Transduction/immunology , src-Family Kinases/immunology , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Gene Knockdown Techniques , HEK293 Cells , Hemorrhagic Fever, Ebola/metabolism , Humans , Jurkat Cells , K562 Cells , Vero Cells , Virus Internalization
19.
J Infect Dis ; 214(suppl 3): S185-S191, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27462094

ABSTRACT

The latest outbreak of Ebola virus disease (EVD) in West Africa has highlighted the urgent need for the development of rapid and reliable diagnostic assays. We used monoclonal antibodies specific to the ebolavirus nucleoprotein to develop an immunochromatography (IC) assay (QuickNavi-Ebola) for rapid diagnosis of EVD. The IC assay was first evaluated with tissue culture supernatants of infected Vero E6 cells and found to be capable of detecting 103-104 focus-forming units/mL of ebolaviruses. Using serum samples from experimentally infected nonhuman primates, we confirmed that the assay could detect the viral antigen shortly after disease onset. It was also noted that multiple species of ebolaviruses could be detected by the IC assay. Owing to the simplicity of the assay procedure and absence of requirements for special equipment and training, QuickNavi-Ebola is expected to be a useful tool for rapid diagnosis of EVD.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Chromatography, Affinity/methods , Disease Outbreaks , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/diagnosis , Africa, Western/epidemiology , Animals , Antibodies, Viral/blood , Ebolavirus/isolation & purification , Enzyme-Linked Immunosorbent Assay , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Humans , Nucleoproteins/immunology
20.
PLoS One ; 10(9): e0137989, 2015.
Article in English | MEDLINE | ID: mdl-26368015

ABSTRACT

Two highly pathogenic avian influenza virus strains, A/duck/Hokkaido/WZ83/2010 (H5N1) (WZ83) and A/duck/Hokkaido/WZ101/2010 (H5N1) (WZ101), which were isolated from wild ducks in Japan, were found to be genetically similar, with only two amino acid differences in their M1 and PB1 proteins at positions 43 and 317, respectively. We found that both WZ83 and WZ101 caused lethal infection in chickens but WZ101 killed them more rapidly than WZ83. Interestingly, ducks experimentally infected with WZ83 showed no or only mild clinical symptoms, whereas WZ101 was highly lethal. We then generated reassortants between these viruses and found that exchange of the M gene segment completely switched the pathogenic phenotype in both chickens and ducks, indicating that the difference in the pathogenicity for these avian species between WZ83 and WZ101 was determined by only a single amino acid in the M1 protein. It was also found that WZ101 showed higher pathogenicity than WZ83 in mice and that WZ83, whose M gene was replaced with that of WZ101, showed higher pathogenicity than wild-type WZ83, although this reassortant virus was not fully pathogenic compared to wild-type WZ101. These results suggest that the amino acid at position 43 of the M1 protein is one of the factors contributing to the pathogenicity of H5N1 highly pathogenic avian influenza viruses in both avian and mammalian hosts.


Subject(s)
Amino Acid Substitution , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Mutation, Missense , Orthomyxoviridae Infections/genetics , Viral Matrix Proteins/genetics , Animals , Chick Embryo , Ducks , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...