Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Heart J Open ; 4(3): oeae034, 2024 May.
Article in English | MEDLINE | ID: mdl-38854954

ABSTRACT

Aims: Chronic neurohormonal activation and haemodynamic load cause derangement in the utilization of the myocardial substrate. In this study, we test the hypothesis that the primary mitral regurgitation (PMR) heart shows an altered metabolic gene profile and cardiac ultra-structure consistent with decreased fatty acid and glucose metabolism despite a left ventricular ejection fraction (LVEF) > 60%. Methods and results: Metabolic gene expression in right atrial (RA), left atrial (LA), and left ventricular (LV) biopsies from donor hearts (n = 10) and from patients with moderate-to-severe PMR (n = 11) at surgery showed decreased mRNA glucose transporter type 4 (GLUT4), GLUT1, and insulin receptor substrate 2 and increased mRNA hexokinase 2, O-linked N-acetylglucosamine transferase, and O-linked N-acetylglucosaminyl transferase, rate-limiting steps in the hexosamine biosynthetic pathway. Pericardial fluid levels of neuropeptide Y were four-fold higher than simultaneous plasma, indicative of increased sympathetic drive. Quantitative transmission electron microscopy showed glycogen accumulation, glycophagy, increased lipid droplets (LDs), and mitochondrial cristae lysis. These findings are associated with increased mRNA for glycogen synthase kinase 3ß, decreased carnitine palmitoyl transferase 2, and fatty acid synthase in PMR vs. normals. Cardiac magnetic resonance and positron emission tomography for 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake showed decreased LV [18F]FDG uptake and increased plasma haemoglobin A1C, free fatty acids, and mitochondrial damage-associated molecular patterns in a separate cohort of patients with stable moderate PMR with an LVEF > 60% (n = 8) vs. normal controls (n = 8). Conclusion: The PMR heart has a global ultra-structural and metabolic gene expression pattern of decreased glucose uptake along with increased glycogen and LDs. Further studies must determine whether this presentation is an adaptation or maladaptation in the PMR heart in the clinical evaluation of PMR.

2.
J Pharmacol Exp Ther ; 388(2): 568-575, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38050084

ABSTRACT

Burn injuries including those caused by chemicals can result in systemic effects and acute lung injury (ALI). Cutaneous exposure to Lewisite, a warfare and chemical burn agent, also causes ALI. To overcome the limitations in conducting direct research on Lewisite-induced ALI in a laboratory setting, an animal model was developed using phenylarsine oxide (PAO) as a surrogate for Lewisite. Due to lack of a reliable animal model mimicking the effects of such exposures, development of effective therapies to treat such injuries is challenging. We demonstrated that a single cutaneous exposure to PAO resulted in disruption of the alveolar-capillary barrier as evidenced by elevated protein levels in the bronchoalveolar lavage fluid (BALF). BALF supernatant of PAO-exposed animals had increased levels of high mobility group box 1, a damage associated molecular pattern molecule. Arterial blood-gas measurements showed decreased pH, increased PaCO2, and decreased partial pressure of arterial O2, indicative of respiratory acidosis, hypercapnia, and hypoxemia. Increased protein levels of interleukin (IL)-6, CXCL-1, CXCL-2, CXCL-5, granulocyte-macrophage colony-stimulating factor, CXCL-10, leukemia inhibitory factor, leptin, IL-18, CCL-2, CCL-3, and CCL-7 were observed in the lung of PAO-exposed mice. Further, vascular endothelial growth factor levels were reduced in the lung. Pulmonary function evaluated using a flexiVent showed a downward shift in the pressure-volume loop, decreases in static compliance and inspiratory capacity, increases in respiratory elastance and tissue elastance. These changes are consistent with an ALI phenotype. These results demonstrate that cutaneous PAO exposure leads to ALI and that the model can be used as an effective surrogate to investigate vesicant-induced ALI. SIGNIFICANCE STATEMENT: This study presents a robust model for studying ALI resulting from cutaneous exposure to PAO, a surrogate for the toxic vesicating agent Lewisite. The findings in this study mimic the effects of cutaneous Lewisite exposure, providing a reliable model for investigating mechanisms underlying toxicity. The model can also be used to develop medical countermeasures to mitigate ALI associated with cutaneous Lewisite exposure.


Subject(s)
Acute Lung Injury , Arsenicals , Irritants , Mice , Animals , Irritants/adverse effects , Disease Models, Animal , Vascular Endothelial Growth Factor A/metabolism , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Interleukin-6/metabolism
3.
Free Radic Biol Med ; 208: 126-133, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37543167

ABSTRACT

BACKGROUND: Primary mitral regurgitation (PMR) is associated with oxidative and inflammatory myocardial damage. We reported greater exosome hemoglobin (Hb) in pericardial fluid (PCF) versus plasma, suggesting a cardiac source of Hb. OBJECTIVE: Test the hypothesis that Hb is produced in the PMR heart and is associated with increased inflammation. METHODS AND RESULTS: Hb gene expression for subunits alpha (HBA) and beta (HBB) was assessed in right atria (RA), left atria (LA) and left ventricular (LV) tissue from donor hearts (n = 10) and PMR patient biopsies at surgery (n = 11). PMR patients (n = 22) had PCF and blood collected for macrophage markers, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In-situ hybridization for HBA mRNA and immunohistochemistry for Hb-alpha (Hbα) and Hb-beta (Hbß) protein was performed on PMR tissue. RESULTS: HBA and HBB genes are significantly increased (>4-fold) in RA, LA, and LV in PMR vs. normal hearts. In PMR tissue, HBA mRNA is expressed in both LV cardiomyocytes and interstitial cells by in-situ hybridization; however, Hbα and Hbß protein is only expressed in interstitial cells by immunohistochemistry. PCF oxyHb is significantly increased over plasma along with low ratios (<1.0) of haptoglobin:oxyHb and hemopexin:heme supporting a highly oxidative environment. Macrophage chemotactic protein-1, tumor necrosis factor-α, interleukin-6, and MMPs are significantly higher in PCF vs. plasma. CONCLUSION: There is increased Hb production in the PMR heart coupled with the inflammatory state of the heart, suggests a myocardial vulnerability of further Hb delivery and/or production during cardiac surgery that could adversely affect LV functional recovery.


Subject(s)
Heart Transplantation , Mitral Valve Insufficiency , Humans , Mitral Valve Insufficiency/genetics , Mitral Valve Insufficiency/surgery , Tissue Donors , Hemoglobins/genetics , Oxidative Stress , RNA, Messenger/genetics , Matrix Metalloproteinases
4.
Semin Cancer Biol ; 83: 384-398, 2022 08.
Article in English | MEDLINE | ID: mdl-33484868

ABSTRACT

Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.


Subject(s)
COVID-19 , Lung Diseases , Lung Neoplasms , MicroRNAs , COVID-19/genetics , Cytokines , Epigenesis, Genetic , Humans , Inflammation/genetics , Lung Diseases/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , SARS-CoV-2
5.
Int J Mol Sci ; 22(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204780

ABSTRACT

The risk of accidental bromine (Br2) exposure to the public has increased due to its enhanced industrial use. Inhaled Br2 damages the lungs and the heart; however, adverse effects on the brain are unknown. In this study, we examined the neurological effects of inhaled Br2 in Sprague Dawley rats. Rats were exposed to Br2 (600 ppm for 45 min) and transferred to room air and cage behavior, and levels of glial fibrillary acidic protein (GFAP) in plasma were examined at various time intervals. Bromine exposure resulted in abnormal cage behavior such as head hitting, biting and aggression, hypervigilance, and hyperactivity. An increase in plasma GFAP and brain 4-hydroxynonenal (4-HNE) content also was observed in the exposed animals. Acute and delayed sympathetic nervous system activation was also evaluated by assessing the expression of catecholamine biosynthesizing enzymes, tryptophan hydroxylase (TrpH1 and TrpH2), and tyrosine hydroxylase (TyrH), along with an assessment of catecholamines and their metabolites. TyrH was found to be increased in a time-dependent manner. TrpH1 and TrpH2 were significantly decreased upon Br2 exposure in the brainstem. The neurotransmitter content evaluation indicated an increase in 5-HT and dopamine at early timepoints after exposure; however, other metabolites were not significantly altered. Taken together, our results predict brain damage and autonomic dysfunction upon Br2 exposure.


Subject(s)
Behavior, Animal , Brain Stem/pathology , Bromine/administration & dosage , Bromine/adverse effects , Neurons/pathology , Oxidative Stress , Administration, Inhalation , Animals , Biomarkers/metabolism , Brain Injuries/pathology , Catecholamines/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Metabolome , Neurons/drug effects , Neurotransmitter Agents/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Tryptophan Hydroxylase/metabolism , Tyrosine 3-Monooxygenase/metabolism
6.
Ann N Y Acad Sci ; 1479(1): 210-222, 2020 11.
Article in English | MEDLINE | ID: mdl-32329907

ABSTRACT

Lewisite is a strong vesicating and chemical warfare agent. Because of the rapid transdermal absorption, cutaneous exposure to lewisite can also elicit severe systemic injury. Lewisite (2.5, 5.0, and 7.5 mg/kg) was applied to the skin of Ptch1+/- /SKH-1 mice and acute lung injury (ALI) was assessed after 24 hours. Arterial blood gas measurements showed hypercapnia and hypoxemia in the lewisite-exposed group. Histological evaluation of lung tissue revealed increased levels of proinflammatory neutrophils and a dose-dependent increase in structural changes indicative of injury. Increased inflammation was also confirmed by altered expression of cytokines, including increased IL-33, and a dose-dependent elevation of CXCL1, CXCL5, and GCSF was observed in the lung tissue. In the bronchoalveolar lavage fluid of lewisite-exposed animals, there was a significant increase in HMGB1, a damage-associated molecular pattern molecule, as well as elevated CXCL1 and CXCL5, which coincided with an influx of neutrophils to the lungs. Complete blood cell analysis revealed eosinophilia and altered neutrophil-lymphocyte ratios as a consequence of lewisite exposure. Mean platelet volume and RBC distribution width, which are predictors of lung injury, were also increased in the lewisite group. These data demonstrate that cutaneous lewisite exposure causes ALI and may contribute to mortality in exposed populations.


Subject(s)
Acute Lung Injury , Arsenicals , Chemical Warfare Agents/poisoning , Cytokines/metabolism , Lung , Neutrophil Infiltration/drug effects , Neutrophils , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage , Female , Leukocyte Count , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Hairless , Neutrophils/metabolism , Neutrophils/pathology , Platelet Count , Skin/metabolism , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...