Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(42): e202300479, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37199015

ABSTRACT

Development of miniaturized lab-on-chip devices for the detection of rapid and specific small molecule-protein binding interactions at very low concentrations holds significant importance in drug discovery and biomedical applications. Here, the label-free detection of small molecule-protein interactions is reported on the surface functionalizable nanotubes of α,γ-hybrid peptide helical foldamers using nanoscale capacitance and impedance spectroscopy. The 12-helix conformation of the α,γ-hybrid peptide observed in the single crystals, self-assembled into nanotubes in an aqueous environment with exposed cysteine thiols for small molecule conjugation. The binding of streptavidin to the covalently linked biotin on the surface of nanotubes was detected at the picomolar concentrations. No change in the capacitance and impedance were observed in the absence of either immobilized biotin or protein streptavidin. The functionalizable hybrid peptide nanotubes reported here pave the way for the label-free detection of various small molecule protein interactions at very low concentrations.


Subject(s)
Biotin , Nanotubes , Streptavidin/chemistry , Biotin/chemistry , Nanotubes/chemistry , Peptides/chemistry , Proteins
2.
J Phys Chem Lett ; 11(1): 263-271, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31834996

ABSTRACT

The role of electrocatalysts in energy storage/conversion, biomedical and environmental sectors, green chemistry, and much more has generated enormous interest in comprehending their structure-activity relations. While targeting the surface-to-volume ratio, exposing reactive crystal planes and interfacial modifications are time-tested considerations for activating metallic catalysts; it is primarily by substitution in molecular electrocatalysts. This account draws the distinction between a substituent's chemical identity and isomerism, when regioisomerism of the -NO2 substituent is conferred at the "α" and "ß" positions on the macrocycle of cobalt phthalocyanines. Spectroscopic analysis and theoretical calculations establish that the ß isomer accumulates catalytically active intermediates via a cumulative influence of inductive and resonance effects. However, the field effect in the α isomer restricts this activation due to a vanishing resonance effect. The demonstration of the distinct role of isomerism in substituted molecular electrocatalysts for reactions ranging from energy conversion to biosensing highlights that isomerism of the substituents makes an independent contribution to electrocatalysis over its chemical identity.

3.
Anal Chem ; 90(21): 12917-12922, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30289243

ABSTRACT

We illustrate that the extent of hydration and consequently the heat of hydration of alkali metal ions can be utilized to control their insertion/deinsertion chemistry in a redox active metal coordination polymer framework (CPF) electrode. The formal redox potential of CPF electrode for cation intercalation is inversely correlated to hydrated ionic radii, with clear distinction between the intercalation of ions across alkali metal series. This leads to noninvasive identification and differentiation of cations in the alkali metal series by utilizing a single sensing platform.

4.
J Phys Chem Lett ; 9(10): 2492-2497, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29688728

ABSTRACT

We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

5.
Anal Chem ; 90(7): 4501-4506, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29533600

ABSTRACT

Electrochemical interfaces invariably generate unipolar electromotive force because of the unidirectional nature of electrochemical double layers. Herein we show an unprecedented generation of a time varying bipolar electric field between identical half-cell electrodes induced by tailored interfacial migration of magnetic particles. The periodic oscillation of a bipolar electric field is monotonically correlated with velocity-dependent torque, opening new electrochemical pathways targeting velocity monitoring systems.

6.
J Phys Chem Lett ; 9(2): 388-392, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29294292

ABSTRACT

State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm2 at a peak current density of 160 mA/cm2 with a cathodic H2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

7.
Anal Chem ; 89(15): 7893-7899, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28670898

ABSTRACT

Bipolar junction transistors are at the frontiers of modern electronics owing to their discrete voltage regulated operational levels. Here we report a redox active binary logic gate (RLG) which can store a "0" and "1" with distinct operational levels, albeit without an external voltage stimuli. In the RLG, a shorted configuration of half-cell electrodes provided the logic low level and decoupled configuration relaxed the system to the logic high level due to self-charge injection into the redox active polymeric system. Galvanostatic intermittent titration and electrochemical quartz crystal microbalance studies indicate the kinetics of self-charge injection are quite faster and sustainable in polypyrrole based RLG, recovering more than 70% signal in just 14 s with minor signal reduction at the end of 10000 cycles. These remarkable properties of RLGs are extended to design a security sensor which can detect and count intruders in a locality with decent precision and switching speed.

SELECTION OF CITATIONS
SEARCH DETAIL
...