Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 27(8): 2163-77, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26209554

ABSTRACT

Dicer enzymes function at the core of RNA silencing to defend against exogenous RNA or to regulate endogenous genes. Plant DICER-LIKE4 (DCL4) performs dual functions, acting in antiviral defense and in development via the biogenesis of trans-acting short-interfering RNAs (siRNAs) termed tasiR-ARFs. These small RNAs play an essential role in the grasses, spatially defining the expression domain of AUXIN RESPONSE FACTOR3 (ARF3) transcription factors. However, contrary to tasiR-ARFs' essential function in development, DCL4 proteins exhibit strong evidence of recurrent adaptation typical of host factors involved in antiviral immunity. Here, we address how DCL4 balances its role in development with pressures to diversify in response to viral attack. We show that, in contrast to other tasiR-ARF biogenesis mutants, dcl4 null alleles have an uncharacteristically mild phenotype, correlated with normal expression of select arf3 targets. Loss of DCL4 activity yields a class of 22-nucleotide tasiR-ARF variants associated with the processing of arf3 transcripts into 22-nucleotide secondary siRNAs by DCL1. Our findings reveal a DCL1-dependent siRNA pathway that bypasses the otherwise adverse developmental effects of mutations in DCL4. This pathway is predicted to have important implications for DCL4's role in antiviral defense by reducing the selective constraints on DCL4 and allowing it to diversify in response to viral suppressors.


Subject(s)
Plant Proteins/genetics , RNA, Small Interfering/genetics , Ribonuclease III/genetics , Zea mays/genetics , Amino Acid Sequence , Base Sequence , Binding Sites/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , In Situ Hybridization , MicroRNAs/genetics , Molecular Sequence Data , Mutation , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction , Ribonuclease III/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Zea mays/growth & development , Zea mays/metabolism
2.
J Exp Bot ; 66(19): 5753-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26093144

ABSTRACT

The fdl1-1 mutation, caused by an Enhancer/Suppressor mutator (En/Spm) element insertion located in the third exon of the gene, identifies a novel gene encoding ZmMYB94, a transcription factor of the R2R3-MYB subfamily. The fdl1 gene was isolated through co-segregation analysis, whereas proof of gene identity was obtained using an RNAi strategy that conferred less severe, but clearly recognizable specific mutant traits on seedlings. Fdl1 is involved in the regulation of cuticle deposition in young seedlings as well as in the establishment of a regular pattern of epicuticular wax deposition on the epidermis of young leaves. Lack of Fdl1 action also correlates with developmental defects, such as delayed germination and seedling growth, abnormal coleoptile opening and presence of curly leaves showing areas of fusion between the coleoptile and the first leaf or between the first and the second leaf. The expression profile of ZmMYB94 mRNA-determined by quantitative RT-PCR-overlaps the pattern of mutant phenotypic expression and is confined to a narrow developmental window. High expression was observed in the embryo, in the seedling coleoptile and in the first two leaves, whereas RNA level, as well as phenotypic defects, decreases at the third leaf stage. Interestingly several of the Arabidopsis MYB genes most closely related to ZmMYB94 are also involved in the activation of cuticular wax biosynthesis, suggesting deep conservation of regulatory processes related to cuticular wax deposition between monocots and dicots.


Subject(s)
Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/genetics , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/metabolism , Mutation , Organogenesis, Plant , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Transcription Factors/metabolism , Zea mays/embryology , Zea mays/metabolism
3.
Plant Cell ; 17(3): 722-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15722463

ABSTRACT

The mechanisms for the regulation of homeotic genes are poorly understood in most organisms, including plants. We identified BASIC PENTACYSTEINE1 (BPC1) as a regulator of the homeotic Arabidopsis thaliana gene SEEDSTICK (STK), which controls ovule identity, and characterized its mechanism of action. A combination of tethered particle motion analysis and electromobility shift assays revealed that BPC1 is able to induce conformational changes by cooperative binding to purine-rich elements present in the STK regulatory sequence. Analysis of STK expression in the bpc1 mutant showed that STK is upregulated. Our results give insight into the regulation of gene expression in plants and provide the basis for further studies to understand the mechanisms that control ovule identity in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA-Binding Proteins/metabolism , MADS Domain Proteins/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Base Sequence , Binding Sites/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Plant/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Genes, Homeobox , Genes, Plant , Genes, Regulator , Molecular Sequence Data , Nucleic Acid Conformation , Plants, Genetically Modified , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...