Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(4): 2229-2239, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38230629

ABSTRACT

By analyzing the folic acid content of various mouse strains through the use of in vivo studies, this study sought to determine whether folic acid bioavailability varies between hosts. In order to examine the stability of folic acid in the gastrointestinal tract, the rate at which it enters the blood, its retention in the organs, and its entry into the brain, folic acid was gavaged for 10 days into male and female mice of the following four strains: C57BL/6, BALB/c, ICR, and Kunming. Folic acid was extracted from eight groups of mice via solid phase extraction and triple enzyme extraction; the folic acid was subsequently quantified by ultraperformance liquid chromatography. In contrast to the other groups, female C57BL/6 mice exhibited substantially greater bioavailability as well as variations in organ retention and blood entry rates, as indicated by the experimental findings. This finding indicated that using female C57BL/6 mice to evaluate the bioavailability of folic acid is more effective.


Subject(s)
Digestion , Folic Acid , Male , Female , Mice , Animals , Chromatography, High Pressure Liquid , Biological Availability , Mice, Inbred ICR , Mice, Inbred C57BL
2.
J Agric Food Chem ; 71(48): 18722-18734, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37980612

ABSTRACT

Ethanolic gastric mucosal impairment is one of the most common disorders in the gastrointestinal system. In this study, we investigated the potential alleviating effects of sea cucumber peptides on Ges-1 impairment caused by ethanol and the associated mechanisms. The sea cucumber peptide VLLY could promote the proliferation and migration of healthy Ges-1 cells. After ethanol injury, VLLY peptide treatment could greatly promote the migration of Ges-1 cells, scavenge intracellular and mitochondrial ROS, reverse mitochondrial fission and F-actin depolymerization, and improve mitochondrial respiration. VLLY peptide restored mitochondrial dynamics by downregulating Drp1 and Fis1 and upregulating Mfn2 against excessive mitochondrial fission. In addition, the VLLY peptide maintained the mitochondrial membrane potential, ablated the leakage of cytochrome c to the cytoplasm, upregulated the expression of the antiapoptotic factor Bcl-XL, decreased the expression of the proapoptotic factors of Bax, BAD, and cleaved caspase-3, and finally blocked the mitochondria-related apoptotic pathway. These findings strongly suggested that sea cucumber peptides could promote proliferation and migration of healthy Ges-1 cells and reverse ethanol-induced excess mitochondrial fission and maintain mitochondrial homeostasis through the Fis1/Bax pathway, thereby improving ethanol-induced apoptosis. VLLY offers a new perspective for improving the ethanolic gastric mucosal epithelial cell injury.


Subject(s)
Apoptosis , Mitochondrial Dynamics , bcl-2-Associated X Protein/metabolism , Ethanol
3.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37017113

ABSTRACT

Intestinal inflammatory diseases are increasingly prevalent worldwide, and their pathogenesis is still not fully understood. As of late, studies have discovered that food-derived peptides have specific anti-inflammatory activity and can play a positive role in intestinal health. At the same time, it has broad application prospects in the prevention and treatment of colitis because of its wide source, fast absorption, and high safety. This article reviews the structure-activity and quantity-effect relationships of food-derived peptides for their anti-inflammatory effects. It then discusses their mechanism of action in inhibiting colitis from four aspects. Food-derived anti-inflammatory peptides can delay the progression of the disease by stimulating innate immunity, inhibiting inflammation, and promoting wound healing. Further experiments showed that food-derived anti-inflammatory peptides could prevent and treat colitis through four mechanisms: (a) regulation of inflammatory cytokines; (b) regulation of inflammatory pathways; (c) regulation of intestinal epithelial barrier; (d) regulation of intestinal flora balance. However, due to the treatment of colitis having limitations, there is an urgent to develop food-derived anti-inflammatory peptides as a treatment or adjunctive treatment for colitis. This review highlights the positive effects of food-derived peptides on colitis and anticipates the appearance of mitigating peptides for the therapy of colitis.

SELECTION OF CITATIONS
SEARCH DETAIL
...