Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cell Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969803

ABSTRACT

Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to comprehensively learn both sequence and structure contexts from ~160 million proteins. ProMEP achieves state-of-the-art performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants. The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of proteins, thereby advancing studies in biomedicine and synthetic biology.

2.
Front Microbiol ; 15: 1345717, 2024.
Article in English | MEDLINE | ID: mdl-38577682

ABSTRACT

Hypertrophic scars affect a significant number of individuals annually, giving rise to both cosmetic concerns and functional impairments. Prior research has established that an imbalance in the composition of gut microbes, termed microbial dysbiosis, can initiate the progression of various diseases through the intricate interplay between gut microbiota and the host. However, the precise nature of the causal link between gut microbiota and hypertrophic scarring remains uncertain. In this study, after compiling summary data from genome-wide association studies (GWAS) involving 418 instances of gut microbiota and hypertrophic scarring, we conducted a bidirectional Mendelian randomization (MR) to investigate the potential existence of a causal relationship between gut microbiota and the development of hypertrophic scar and to discern the directionality of causation. By utilizing MR analysis, we identified seven causal associations between gut microbiome and hypertrophic scarring, involving one positive and six negative causal directions. Among them, Intestinimonas, Ruminococcus2, Barnesiella, Dorea, Desulfovibrio piger, and Ruminococcus torques act as protective factors against hypertrophic scarring, while Eubacterium rectale suggests a potential role as a risk factor for hypertrophic scars. Additionally, sensitivity analyses of these results revealed no indications of heterogeneity or pleiotropy. The findings of our MR study suggest a potential causative link between gut microbiota and hypertrophic scarring, opening up new ways for future mechanistic research and the exploration of nanobiotechnology therapies for skin disorders.

3.
Eur J Pharmacol ; 974: 176621, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38679118

ABSTRACT

BACKGROUND AND AIM: Necrosis of random-pattern flaps restricts their application in clinical practice. Puerarin has come into focus due to its promising therapeutic effects in ischemic diseases. Here, we employed Puerarin and investigated its role and potential mechanisms in flap survival. EXPERIMENTAL PROCEDURE: The effect of Puerarin on the viability of human umbilical vein endothelial cells (HUVECs) was assessed by CCK-8, EdU staining, migration, and scratch assays. Survival area measurement and laser Doppler blood flow (LDBF) were utilized to assess the viability of ischemic injury flaps. Levels of molecules related to oxidative stress, pyroptosis, autophagy, transcription factor EB (TFEB), and the AMPK-TRPML1-Calcineurin signaling pathway were detected using western blotting, immunofluorescence, dihydroethidium (DHE) staining, RT-qPCR and Elisa. KEY RESULTS: The findings demonstrated that Puerarin enhanced the survivability of ischemic flaps. Autophagy, oxidative stress, and pyroptosis were implicated in the ability of Puerarin in improving flap survival. Increased autophagic flux and augmented tolerance to oxidative stress contribute to Puerarin's suppression of pyroptosis. Additionally, Puerarin modulated the activity of TFEB through the AMPK-TRPML1-Calcineurin signaling pathway, thereby enhancing autophagic flux. CONCLUSIONS AND IMPLICATIONS: Puerarin promoted flap survival from ischemic injury through upregulation of TFEB-mediated autophagy and inhibition of oxidative stress. Our findings offered valuable support for the clinical application of Puerarin in the treatment of ischemic diseases, including random-pattern flaps.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Human Umbilical Vein Endothelial Cells , Ischemia , Isoflavones , Pyroptosis , Reactive Oxygen Species , Isoflavones/pharmacology , Isoflavones/therapeutic use , Autophagy/drug effects , Humans , Pyroptosis/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Ischemia/drug therapy , Ischemia/metabolism , Reactive Oxygen Species/metabolism , Animals , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Male , Oxidative Stress/drug effects , Surgical Flaps/blood supply , Mice , Signal Transduction/drug effects , Skin/drug effects , Skin/metabolism , Skin/blood supply , Skin/pathology
4.
Phytother Res ; 38(5): 2539-2559, 2024 May.
Article in English | MEDLINE | ID: mdl-38459660

ABSTRACT

Avascular necrosis frequently occurs as a complication following surgery involving the distal perforator flap. Dihydrocapsaicin (DHC) can protect tissue from ischemia-reperfusion (I/R) injury, but its specific role in multizone perforator flaps remains unclear. In this study, the prospective target of DHC in the context of I/R injury was predicted using network pharmacology analysis. Flap viability was determined through survival area analysis, laser Doppler blood flow, angiograms, and histological examination. The expressions of angiogenesis, apoptosis, NLR family pyrin domain containing 3 (NLRP3) inflammasome, oxidative stress, and molecules related to cyclic guanosine monophosphate (GMP)-adenosine monophosphate synthase (cGAS)-interferon gene stimulant (STING) pathway were assessed using western blotting, immunofluorescence, TUNEL staining, and dihydroethidium (DHE) staining. Our finding revealed that DHC promoted the perforator flap survival, which involves the cGAS-STING pathway, oxidative stress, NLRP3 inflammasome, apoptosis, and angiogenesis. DHC induced oxidative stress resistance and suppressed the NLRP3 inflammasome, preventing apoptosis in vascular endothelial cells. Through regulation of STING pathway, DHC controlled oxidative stress in endothelial cells and NLRP3 levels in ischemic flaps. However, activation of the cGAS-STING pathway led to the accumulation of reactive oxygen species (ROS) and NLRP3 inflammasome, thereby diminishing the protective role of DHC. DHC enhanced the survival of multidomain perforator flaps by suppressing the cGAS-STING pathway, oxidative stress, and the formation of NLRP3 inflammasome. These findings unveil a potentially novel mechanism with clinical significance for promoting the survival of multidomain perforator flaps.


Subject(s)
Apoptosis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Perforator Flap , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis/drug effects , Inflammasomes/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
5.
Environ Geochem Health ; 46(2): 46, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227069

ABSTRACT

Selenium constitutes an essential trace element for the human body. Moderate Se intake plays a pivotal role in preserving overall health. The absorption of Se by plants is primarily influenced by the available Se levels in soils, rather than by the soil total Se content, offering potential for exploring Se-rich crops in Se-deficient regions. In this study, we explore the factors influencing the Se bioaccumulation coefficient in corn based on a land quality geochemical survey at a 1:50,000 scale and establish predictive models for corn seed Se content using random forest and multiple linear regression approaches. The results indicate that the surface soil in the study area is deficient in Se (0.18-1.21 mg/kg), but 54% of the corn grain samples met the standards for Se-rich products (0.02-0.30 mg/kg). The factors influencing the Se biological enrichment coefficient in corn seeds are soil pH and CaO and MgO content, with impact levels of 0.54, 0.42, and 0.35, respectively. Compared to multiple linear regression models, the RF model provides more accurate and reliable predictions of corn Se content. The random forest model indicates that approximately 41% of the farmland within the study area is conducive to the cultivation of naturally Se-rich corn, which is a 26% increase in the planting area compared to recommendations based solely on soil Se content. In this research, we introduce an innovative methodological framework for organically cultivating naturally Se-rich corn within regions affected by Se deficiency.


Subject(s)
Random Forest , Zea mays , Humans , Feasibility Studies , Bioaccumulation , Soil
6.
ACS Nano ; 18(5): 4269-4286, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38270104

ABSTRACT

The repair of diabetic wounds remains challenging, primarily due to the high-glucose-derived immune inhibition which often leads to the excessive inflammatory response, impaired angiogenesis, and heightened susceptibility to infection. However, the means to reduce the immunosuppression and regulate the conversion of M2 phenotype macrophages under a high-glucose microenvironment using advanced biomaterials for diabetic wounds are not yet fully understood. Herein, we report two-dimensional carbide (MXene)-M2 macrophage exosome (Exo) nanohybrids (FM-Exo) for promoting diabetic wound repair by overcoming the high-glucose-derived immune inhibition. FM-Exo showed the sustained release of M2 macrophage-derived exosomes (M2-Exo) up to 7 days and exhibited broad-spectrum antibacterial activity. In the high-glucose microenvironment, relative to the single Exo, FM-Exo could significantly induce the optimized M2a/M2c polarization ratio of macrophages by activating the PI3K/Akt signaling pathway, promoting the proliferation, migration of fibroblasts, and angiogenic ability of endothelial cells. In the diabetic full-thickness wound model, FM-Exo effectively regulated the polarization status of macrophages and promoted their transition to the M2 phenotype, thereby inhibiting inflammation, promoting angiogenesis through VEGF secretion, and improving proper collagen deposition. As a result, the healing process was accelerated, leading to a better healing outcome with reduced scarring. Therefore, this study introduced a promising approach to address diabetic wounds by developing bioactive nanomaterials to regulate immune inhibition in a high-glucose environment.


Subject(s)
Diabetes Mellitus , Exosomes , Nanocomposites , Nitrites , Transition Elements , Humans , Wound Healing , Endothelial Cells , Exosomes/metabolism , Phosphatidylinositol 3-Kinases , Diabetes Mellitus/metabolism , Glucose/metabolism , Nanocomposites/therapeutic use
7.
Nat Commun ; 14(1): 7434, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973874

ABSTRACT

Inverse Protein Folding (IPF) is an important task of protein design, which aims to design sequences compatible with a given backbone structure. Despite the prosperous development of algorithms for this task, existing methods tend to rely on noisy predicted residues located in the local neighborhood when generating sequences. To address this limitation, we propose an entropy-based residue selection method to remove noise in the input residue context. Additionally, we introduce ProRefiner, a memory-efficient global graph attention model to fully utilize the denoised context. Our proposed method achieves state-of-the-art performance on multiple sequence design benchmarks in different design settings. Furthermore, we demonstrate the applicability of ProRefiner in redesigning Transposon-associated transposase B, where six out of the 20 variants we propose exhibit improved gene editing activity.


Subject(s)
Algorithms , Proteins , Entropy , Proteins/genetics , Proteins/chemistry , Protein Folding
8.
Micromachines (Basel) ; 14(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37893247

ABSTRACT

The effect of graphite powder on the machining characteristics in graphite-powder-mixed electrochemical discharge machining of microholes was still not clear. How the discharge mechanism changed with the addition of graphite powder into the electrolyte, which further led to changes in the morphology of the machined holes, remained to be revealed. In this study, a series of microhole machining experiments were conducted in glass. Comparisons of the discharge energy, microhole entrance diameter, hole taper, and tool electrode morphology after machining were made when machining in the electrolytes with and without graphite powder. Experimental results revealed that there were a lot of small pulse currents distributed on the current waveform when machining with the graphite-powder-mixed electrolyte. The average discharge energy of the small pulse current was 2.8 times as much as that of the general electrochemical discharge. After introducing graphite powder into the electrolyte, the entrance diameter of the hole became larger when the hole depth was deeper than 200 µm. The HAZ width increased with increasing hole depth at the voltage of 37-41 V, while it decreased at the voltage of 43 V. A reduction in hole taper angle with a range of 0.5° to 2.3° was achieved. In addition, after machining in electrolytes with and without graphite powder, the tool electrode surfaces showed different morphologies due to different discharges.

9.
Front Cell Infect Microbiol ; 13: 1230689, 2023.
Article in English | MEDLINE | ID: mdl-37593762

ABSTRACT

Introduction: Despite long-term integrated control programs for Eimeria stiedai infection in China, hepatic coccidiosis in rabbits persists. Th1, Th2, Th17, Treg, Th9, and Th21 cells are involved in immune responses during pathogen infection. It is unclear whether Th cell subsets are also involved in E. stiedai infection. Their roles in the immunopathology of this infection remain unknown. Therefore, monitoring these T-cell subsets' immune responses during primary infection of E. stiedai at both transcriptional (mRNA) and protein (cytokines) levels is essential. Methods: In experimentally infected New Zealand white rabbits, mRNA expression levels of their transcript-TBX2 (Th1), GATA3 (Th2), RORC (Th17), Foxp3 (Treg), SPI1 (Th9), and BCL6 (Th21)-were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), whereas Th1 (IFN-g and TNF-a), Th2 (IL4), Th17 (IL17A and IL6), Treg (IL10 and TGF-b1), Th9 (IL9), and Th21 (IL21) cytokines were measured using enzyme-linked immunosorbent assays (ELISAs). Results: We found that levels of TBX2, GATA3, RORC, SPI1, and BCL6 in the livers of infected rabbits were elevated on days 5 and 15 post-infection (PI). The concentrations of their distinctive cytokines IFN-g and TNF-a for Th1, IL4 for Th2, IL17A for Th17, IL9 for Th9, IL21 for Th21, and IL10 for Treg IL10 were also significantly increased on days 5 and 15 PI, respectively (p < 0.05). On day 23 PI, GATA3 with its cytokine IL4, RORC with IL17A, Foxp3 with IL10 and TGF-b1, and SPI1 with IL9 were significantly decreased, but TBX2 with IFN-g and IL6 remained elevated. Discussion: Our findings are the first evidence of Th1/Th2/Treg/Th17/Th9/Th21 changes in E. stiedai-infected rabbits and provide insights into immune regulation mechanisms and possible vaccine development.


Subject(s)
Eimeria , Rabbits , Animals , Interleukin-10 , Interleukin-4 , Interleukin-6 , Interleukin-9 , T-Lymphocytes, Regulatory , Interferon-gamma , Th17 Cells , Cytokines , Immunity , Forkhead Transcription Factors
10.
Adv Healthc Mater ; 12(29): e2301394, 2023 11.
Article in English | MEDLINE | ID: mdl-37540810

ABSTRACT

It is challenging to manage inflammatory diseases using traditional anti-inflammatory drugs due to their limited efficacy and systemic side effects, which are a result of their lack of selectivity, poor stability, and low solubility. Herein, it reports the development of a novel nanoparticle system, called ROS-CA-NPs, which is formed using polymer-cinnamaldehyde (CA) conjugates and is responsive to reactive oxygen species (ROS). ROS-CA-NPs exhibit excellent drug stability, tissue selectivity, and controlled drug release upon oxidative stress activation. Using mouse models of chronic rheumatoid arthritis and acute ulcerative colitis, this study demonstrates that the systemic administration of ROS-CA-NPs results in their accumulation at inflamed lesions and leads to greater therapeutic efficacy compared to traditional drugs. Furthermore, ROS-CA-NPs present excellent biocompatibility. The findings suggest that ROS-CA-NPs have the potential to be developed as safe and effective nanotherapeutic agents for a broad range of inflammatory diseases.


Subject(s)
Nanoparticles , Prodrugs , Animals , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Reactive Oxygen Species , Polymers , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
11.
Int J Biol Macromol ; 243: 125255, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37295701

ABSTRACT

In preclinical studies, human hair has demonstrated effective hemostatic properties, potentially attributed to keratin proteins facilitating rapid conversion of fibrinogen to fibrin during coagulation. However, the rational use of human hair keratin for hemostasis remains unclear, given its complex mixture of proteins with diverse molecular weights and structures, leading to variable hemostatic capacity. To optimize the rational utilization of human hair keratin for hemostasis, we investigated the effects of different keratin fractions on keratin-mediated fibrinogen precipitation using a fibrin generation assay. Our study focused on high molecular weight keratin intermediate filaments (KIFs) and lower molecular weight keratin-associated proteins (KAPs) combined in various ratios during the fibrin generation. Scanning electron microscope analysis of the precipitates revealed a filamentous pattern with a broad distribution of fiber diameters, likely due to the diversity of keratin mixtures involved. An equal proportion of KIFs and KAPs in the mixture yielded the most extensive precipitation of soluble fibrinogen in an in vitro study, potentially due to structure-induced exposure of active sites. However, all hair protein samples exhibited diverse catalytic behaviors compared to thrombin, highlighting the potential of utilizing specific hair fractions to develop hair protein-based hemostatic materials with optimized capacity.


Subject(s)
Hemostatics , Humans , Hemostatics/pharmacology , Fibrinogen/chemistry , Keratins, Hair-Specific , Hemostasis , Fibrin/chemistry
12.
Int Immunopharmacol ; 119: 110204, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37126988

ABSTRACT

Due to their simplicity and reliability, random-pattern skin flaps are commonly utilized in surgical reconstruction to repair cutaneous wounds. However, the post-operative necrosis frequently happens because of the ischemia and high-level of oxidative stress of random skin flaps, which can severely affect the healing outcomes. Earlier evidence has shown promising effect of Nuciferine (NF) on preventing hydrogen peroxide (H2O2)-induced fibroblast senescence and ischemic injury, however, whether it can function on promoting ischemic flap survival remains unknown. In this work, using network pharmacology analysis, it was possible to anticipate the prospective targets of NF in the context of ischemia. The results revealed that NF treatment minimized H2O2-induced cellular dysfunction of human umbilical vein endothelial cells (HUVECs), and also improved flap survival through strengthening angiogenesis and alleviating oxidative stress, inflammation and apoptosis in vivo. These outcomes should be attributed to TFEB-mediated enhancement of autophagy-lysosomal degradation via the AMPK-mTOR signaling pathway, whilst the restriction of autophagy stimulation with 3MA effectively diminished the above advantages of NF treatment. The increased nuclear translocation of TFEB not only restored lysosome function, but also promoted autophagosome-lysosome fusion, eventually restoring the inhibited autophagic flux and filling the high energy levels. The outcomes of our research can provide potent proof for the application of NF in the therapy of vascular insufficiency associated disorders, including random flaps.


Subject(s)
Aporphines , Autophagy , Surgical Flaps , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Human Umbilical Vein Endothelial Cells/metabolism , Hydrogen Peroxide/adverse effects , Lysosomes , Reproducibility of Results , Aporphines/pharmacology
13.
Front Bioeng Biotechnol ; 11: 1129538, 2023.
Article in English | MEDLINE | ID: mdl-36937759

ABSTRACT

The tissue reconstruction of diabetic wounds mainly depends on the proliferation and remodelling of cutaneous cells around wounds and the transplantation of random skin flaps, however, the proliferation of cells or survival of skin flaps are difficult due to the severe inflammation and other problems caused by diabetes. The stem cell-derived exosomes loaded with miRNA can be an effective therapeutic strategy for promoting diabetic wound healing. Therefore, in this study, the engineered exosomes derived from miR-132-overexpressing adipose stem cells (miR-132-exo) was obtained for promoting the healing of diabetic wounds and skin flaps. In vitro, the miR-132-exo promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs). In vivo, streptozotocin (STZ) induced diabetic mice were used to create full-thickness skin wounds and random skin flaps to further investigate the healing effect of miR-132-exo. The results showed miR-132-exo evidently enhanced the survival of skin flaps and promote diabetic wound healing, through reducing local inflammation, promoting angiogenesis and stimulating M2-macrophages polarization mediated by NF-κB signaling pathway. These novel findings demonstrated that engineered miR-132-exo can be a potent therapeutic for treating diabetic wounds and inflammatory-related disease.

14.
Micromachines (Basel) ; 14(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36838067

ABSTRACT

Electrochemical discharge machining (ECDM) is a promising non-traditional processing technology used to machine non-conductive materials, such as glass and ceramic, based on the evoked electrochemical discharge phenomena around the tool electrode. The discharge in ECDM is a key factor that affects the removal of material. Moreover, the discharge current is an important indicator reflecting the discharge state. However, the discharge characteristics remain an open topic for debate and require further investigation. There is still confusion regarding the distinction of the discharge current from the electrochemical reaction current in ECDM. In this study, high-speed imaging technology was applied to the investigation of the discharge characteristics. By comparing the captured discharge images with the corresponding discharge current, the discharge can be classified into three types. The observations of the discharge effect on the gas film indicate that a force was exerted on the gas film during the discharge process and the shape of the gas film was changed by the force. In addition, the energies released by different types of discharge were calculated according to the voltage and current waveforms. The discharge frequency was found to increase with the increase in applied voltage and the frequency of the second type of discharge was approximately equal to that of the third type when the applied voltage was higher than 40 V.

15.
Toxics ; 10(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36355930

ABSTRACT

A silica-based anion exchange resin was synthesized and used to remove 99Tc from real radioactive liquid waste. The adsorbent had a uniform particle size and exhibited good thermal stability up to 100 °C, which is promising for large-scale column experiments. In accordance with the chemical similarity with Tc, Re was used as a surrogate in this study. The N 1s high-resolution XPS spectra of the adsorbent before and after the adsorption of Re indicated that the ion exchange reaction was the controlling mechanism in the process. After γ-ray irradiation, the changing trend of the Kd was consistent, which showed that the competitive adsorption of NO3- led to a decrease in Kd. The adsorption capacity for the Re decreased slightly from 35.8 to 31.9 mg/g with the increase in the absorbed dose from 0 to 50 kGy. The separation and recovery of Re and the coexisting ions were achieved by chromatographic separation experiments, and the recovery percentage of Re was 86%. In real radioactive liquid waste, N3/SiO2 exhibited good selectivity toward 99Tc over the coexisting metals, namely, 90Sr, 137Cs, 241Am, and U, and the decontamination efficiency of 99Tc attained 65%.

16.
Med Sci Monit ; 28: e938688, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36325822

ABSTRACT

This publication has been retracted by the Editor due to concerns regarding the originality of the figure images.Reference:Yongzeng Feng, Zili He, Cong Mao, Xiaolong Shui, Leyi Cai. Therapeutic Effects of Resveratrol Liposome on Muscle Injury in Rats. Med Sci Monit, 2019; 25:2377-2385. DOI: 10.12659/MSM.913409.

17.
Acta Pharm Sin B ; 12(4): 2014-2028, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35847489

ABSTRACT

Vulnerable atherosclerotic plaque (VASPs) is the major pathological cause of acute cardiovascular event. Early detection and precise intervention of VASP hold great clinical significance, yet remain a major challenge. Photodynamic therapy (PDT) realizes potent ablation efficacy under precise manipulation of laser irradiation. In this study, we constructed theranostic nanoprobes (NPs), which could precisely regress VASPs through a cascade of synergistic events triggered by local irradiation of lasers under the guidance of fluorescence/MR imaging. The NPs were formulated from human serum albumin (HSA) conjugated with a high affinity-peptide targeting osteopontin (OPN) and encapsulated with photosensitizer IR780 and hypoxia-activatable tirapazamine (TPZ). After intravenous injection into atherosclerotic mice, the OPN-targeted NPs demonstrated high specific accumulation in VASPs due to the overexpression of OPN in activated foamy macrophages in the carotid artery. Under the visible guidance of fluorescence and MR dual-model imaging, the precise near-infrared (NIR) laser irradiation generated massive reactive oxygen species (ROS), which resulted in efficient plaque ablation and amplified hypoxia within VASPs. In response to the elevated hypoxia, the initially inactive TPZ was successively boosted to present potent biological suppression of foamy macrophages. After therapeutic administration of the NPs for 2 weeks, the plaque area and the degree of carotid artery stenosis were markedly reduced. Furthermore, the formulated NPs displayed excellent biocompatibility. In conclusion, the developed HSA-based NPs demonstrated appreciable specific identification ability of VASPs and realized precise synergistic regression of atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...