Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39001196

ABSTRACT

Disturbances in the aviation environment can compromise the stability of the aviation optoelectronic stabilization platform. Traditional methods, such as the proportional integral adaptive robust (PI + ARC) control algorithm, face a challenge: once high-frequency disturbances are introduced, their effectiveness is constrained by the control system's bandwidth, preventing further stability enhancement. A state equalizer speed closed-loop control algorithm is proposed, which combines proportional integral adaptive robustness with state equalizer (PI + ARC + State equalizer) control algorithm. This new control structure can suppress high-frequency disturbances caused by mechanical resonance, improve the bandwidth of the control system, and further achieve fast convergence and stability of the PI + ARC algorithm. Experimental results indicate that, in comparison to the control algorithm of PI + ARC, the inclusion of a state equalizer speed closed-loop compensation in the model significantly increases the closed-loop bandwidth by 47.6%, significantly enhances the control system's resistance to disturbances, and exhibits robustness in the face of variations in the model parameters and feedback sensors of the control object. In summary, integrating a state equalizer speed closed-loop with PI + ARC significantly enhances the suppression of high-frequency disturbances and the performance of control systems.

2.
Sensors (Basel) ; 23(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005590

ABSTRACT

The accuracy of the line-of-sight of aviation photoelectric optoelectronic stabilization platforms is limited by two factors: external disturbance and sensor noise. An extended state observer (ESO) can effectively improve their anti-interference ability. However, due to the serious problem of gyroscope noise, further improvement of an ESO's disturbance suppression effect is limited. This article proposes a control structure that combines a Kalman filter (KF) and ESO, effectively improving upon the interference suppression ability of a traditional ESO under the influence of noise. Firstly, an ESO was used to observe the lumped disturbance of the system, and then, the observed disturbance was compensated for in the control loop. Secondly, based on the compensation servo control system, the state equation of the system was reconstructed using a Kalman filter. Finally, the reconstructed filtered state variables were iterated onto the universal state observer, achieving the observation of disturbances while filtering out sensor noise. Under the conditions of a laboratory flight simulation turntable, the line-of-sight stability accuracy level was improved under disturbance excitation. It can be seen that the combination of a Kalman filter and extended disturbance observer proposed in this project improves the ESO's anti-interference ability under the influence of noise.

3.
Sensors (Basel) ; 19(7)2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30959942

ABSTRACT

In this paper, a MIMO (Multi-Input Multi-Output) fuzzy sliding mode control method is proposed for a three-axis inertially stabilized platform. This method is based on the MIMO coupling model of the three-axis inertially stabilized platform in which the dynamic coupling among the three frames, namely the azimuth frame, the pitch frame and the roll frame, is fully considered. Firstly, the dynamic equation of the three-axis inertially stabilized platform is analyzed and its linearized model is obtained. After this, the controller is designed based on the model, during which fuzzy logic is introduced to deal with the frame coupling and the adaptive fuzzy coupling compensation factor is designed to be part of the algorithm. A complete proof of the stability and convergence is also provided in this paper. Finally, the performance of the platform with a MIMO fuzzy sliding mode controller and PI controller is analyzed. The simulation results show that the proposed scheme can guarantee tracking accuracy and effectively suppress the coupling interference between the three frames.

4.
Sensors (Basel) ; 18(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558334

ABSTRACT

Electromechanical actuator (EMA) systems are widely employed in missiles. Due to the influence of the nonlinearities, there is a flat-top of about 64 ms when tracking the small-angle sinusoidal signals, which significantly reduces the performance of the EMA system and even causes the missile trajectory to oscillate. Aiming to solve these problems, this paper presents a hybrid control for flat-top situations. In contrast to the traditional PID or sliding mode controllers that missiles usually use, this paper utilizes improved sliding mode control based on a novel reaching law to eliminate the flat-top during the steering of the input signal, and utilizes the PID control to replace discontinuous control and improve the performance of EMA system. In addition, boundary layer and switching function are employed to solve the high-frequency chattering problem caused by traditional sliding mode control. Experiments indicate that the hybrid control can evidently reduce the flat-top time from 64 ms to 12 ms and eliminate the trajectory limit cycle oscillation. Compared with PID controllers, the proposed controller provides better performance-less chattering, less flat-top, higher precision, and no oscillation.

5.
Sensors (Basel) ; 18(4)2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29596387

ABSTRACT

Torque ripples caused by cogging torque, flux harmonics, and current measurement error seriously restrict the application of a permanent magnet synchronous motor (PMSM), which has been paid more and more attention for the use in inertial stabilized platforms. Sliding mode control (SMC), in parallel with the classical proportional integral (PI) controller, has a high advantage to suppress the torque ripples as its invariance to disturbances. However, since the high switching gain tends to cause chattering and it requires derivative of signals which is not readily obtainable without an acceleration signal sensor. Therefore, this paper proposes a robust SMC scheme based on a rapid nonlinear tracking differentiator (NTD) and a disturbance observer (DOB) to further improve the performance of the SMC. The NTD is employed to providing the derivative of the signal, and the DOB is utilized to estimate the system lumped disturbances, including parameter variations and external disturbances. On the one hand, DOB can compensate the robust SMC speed controller, it can reduce the chattering of SMC on the other hand. Experiments were carried out on an ARM and DSP-based platform. The obtained experimental results demonstrate that the robust SMC scheme has an improved performance with inertia stability and it exhibits a satisfactory anti-disturbance performance compared to the traditional methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...