Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
ACS Sens ; 9(6): 3150-3157, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38717584

ABSTRACT

Tracking trace protein analytes in precision diagnostics is an ongoing challenge. Here, we developed an ultrasensitive detection method for the detection of SARS-CoV-2 nucleocapsid (N) protein by combining enzyme-linked immunosorbent assay (ELISA) with the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) system. First, the SARS-CoV-2 N protein bound by the capture antibody adsorbed on the well plate was sequentially coupled with the primary antibody, biotinylated secondary antibody, and streptavidin (SA), followed by biotin primer binding to SA. Subsequently, rolling circle amplification was initiated to generate ssDNA strands, which were targeted by CRISPR/Cas12a to cleave the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. We observed a linear relationship between fluorescence intensity and the logarithm of N protein concentration ranging from 3 fg/mL to 3 × 107 fg/mL. The limit of detection (LOD) was 1 fg/mL, with approximately nine molecules in 1 µL of the sample. This detection sensitivity was 4 orders magnitude higher than that of commercially available ELISA kits (LOD: 5.7 × 104 fg/mL). This method was highly specific and sensitive and could accurately detect SARS-CoV-2 pseudovirus and clinical samples, providing a new approach for ultrasensitive immunoassay of protein biomarkers.


Subject(s)
Coronavirus Nucleocapsid Proteins , Limit of Detection , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay/methods , COVID-19/diagnosis , COVID-19/virology , CRISPR-Cas Systems/genetics , Phosphoproteins/immunology , Phosphoproteins/chemistry , CRISPR-Associated Proteins/chemistry , Endodeoxyribonucleases/chemistry , Nucleocapsid Proteins/immunology , Bacterial Proteins
2.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793541

ABSTRACT

In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.


Subject(s)
SARS-CoV-2 , Humans , Animals , Virulence , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , Containment of Biohazards , COVID-19/virology , Antiviral Agents/pharmacology
3.
ACS Sens ; 9(1): 244-250, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38085648

ABSTRACT

CRISPR-mediated aptasensors have gained prevalence for detecting non-nucleic acid targets. However, there is an urgent need to develop an easily customizable design to improve the signal-to-noise ratio, enhance universality, and expand the detection range. In this article, we report a CRISPR-mediated programmable aptasensor (CPAS) platform. The platform includes single-stranded DNA comprising the aptamer sequence, locker DNA, and a crRNA recognition region, forming a hairpin structure through complementary hybridization. With T4 DNA polymerase, the crRNA recognition region was transformed into a complete double-stranded DNA through stem-loop extension, thereby activating the trans-cleavage activity of Cas 12a and generating fluorescence signals. The specific binding between the target molecule and aptamer disrupted the formation of the hairpin structure, altering the fluorescence signals. Notably, the CPAS platform allows for easy customization by simply changing the aptamer sequence and locker DNA, without entailing adjustments to the crRNA. The optimal number of bases in the locker DNA was determined to be seven nucleotides for the SARS-CoV-2 spike (S) protein and four nucleotides for ATP. The CPAS platform exhibited high sensitivity for S protein and ATP detection. Integration with a lateral flow assay enabled sensitive detection within 1 h, revealing its excellent potential for portable analysis.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Oligonucleotides , DNA, Single-Stranded , Nucleotides , Adenosine Triphosphate
4.
J Pharm Biomed Anal ; 236: 115754, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37783051

ABSTRACT

Sensitive and accurate detection of interleukin 6 (IL-6) is crucial for the early diagnosis of cerebral infarction to improve patient survival rates. However, the low-abundance of IL-6 in cerebral infarction presents a significant challenge in developing effective diagnosis method. Herein, we studied and analyzed the strong fluorescence property of 4-aminophenol phosphate (APP) and developed an enzyme-linked immunosorbent assay (ELISA) for IL-6 detection. The detection was based on the integration of optical signal change induced by alkaline phosphatase (ALP)-catalyzed APP hydrolysis and ALP-mediated ELISA. The generated colorimetric signal of 4-aminophenol, APP hydrolysis product, was used for ELISA of IL-6 with a detection limit of 0.1 ng/mL, and the visual detection of IL-6 was achieved. The changes in APP fluorescence have a good linear relationship with the logarithm of IL-6 concentration in the range of 0.005 ng/mL to 5.0 ng/mL, with a detection limit of 0.001 ng/mL, which was 100 times lower than that of conventional pNPP-based ELISA. Furthermore, the constructed ELISA effectively distinguished between samples from patients with cerebral infarction and volunteers with non-cerebral infarction, and the severity of symptoms was well distinguished based on IL-6 measurement. The dual-mode ELISA demonstrated high feasibility of low-abundance biomarker detection and displayed good potential for accurate in vitro diagnosis.


Subject(s)
Alkaline Phosphatase , Interleukin-6 , Humans , Hydrolysis , Phosphates , Enzyme-Linked Immunosorbent Assay/methods , Catalysis , Cerebral Infarction , Limit of Detection
5.
Anal Chim Acta ; 1272: 341510, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37355336

ABSTRACT

The development of biosensors mediated by synergistic quenching effect is of great significance for rapid and accurate clinical diagnosis. Hence, we prepared a cyan-emitting fluorescent Si dots for alkaline phosphatase (ALP) detection through the synergistic quenching effect of inner filter effect (IFE) and photo-induced electron transfer (PET). Si dots were prepared by microwave-assisted method, which displayed high quantum yield (28.7%), as well as good physiochemical properties, such as photo-stability, pH stability, and chemical stability. As the hydrolysate of 4-nitrophenyl phosphate disodium salt hexahydrate catalyzed by ALP, both IFE and PET of 4-nitrophenyl to Si dots were used for the turn-off mode detection of ALP. The linear relationships were established between the change of fluorescence intensity and ALP concentration in the range of 0.05 U L-1 to 5.0 U L-1, and 5.0 U L-1 to 80.0 U L-1, respectively. The detection limit was 0.01 U L-1. The synergistic quenching effect caused the turn-off mode detection to be more sensitive, and it can also be used for the accurate detection of ALP in human serum, thereby showing great anti-interference ability in complex environments.


Subject(s)
Alkaline Phosphatase , Quantum Dots , Humans , Alkaline Phosphatase/chemistry , Fluorescence , Quantum Dots/chemistry , Limit of Detection , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods
6.
Anal Chem ; 95(20): 8063-8069, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37167072

ABSTRACT

It is well-established that different detection modes are necessary for corresponding applications, which can effectively reduce matrix interference and improve the detection accuracy. Here, we reported a magnetic separation method based on recombinase polymerase amplification (RPA)-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a for dual-mode analysis of African swine fever virus (ASFV) genes, including colorimetry and fluorescence. The ASFV gene was selected as the initial RPA template to generate the amplicon. The RPA amplicon was then recognized by CRISPR-associated RNA (crRNA), activating the trans-cleavage activity of Cas12a and leading to the nonspecific cleavage of ssDNA as well as a significant release of alkaline phosphatase (ALP) in the ALP-ssDNA modified magnetic bead. The released ALP can catalyze para-nitrophenyl phosphate to generate para-nitrophenol, resulting in substantial changes in absorbance and fluorescence, both of which can be used for detection with the naked eye. This strategy allows the sensitive detection of ASFV DNA, with a 20 copies/mL detection limit; no cross-reactivity with other viruses was observed. A good linear relationship was obtained in serum. In addition, this sensor displayed 100% specificity and sensitivity for clinical sample analysis. This method integrates the high sensitivity of fluorescence with easy readout of colorimetry and enables a simple, low-cost, and highly sensitive dual-mode detection of viral nucleic acid, thereby providing a broad prospect for the practical application in the diagnosis of virus infection.


Subject(s)
African Swine Fever Virus , Recombinases , Animals , Swine , African Swine Fever Virus/genetics , CRISPR-Cas Systems/genetics , Colorimetry , Nucleotidyltransferases , Alkaline Phosphatase , Coloring Agents , Nucleic Acid Amplification Techniques
7.
Small ; 19(23): e2207736, 2023 06.
Article in English | MEDLINE | ID: mdl-36916696

ABSTRACT

DNA self-assembly has been developed as a kind of robust signal amplification strategy, but most of reported assembly pathways are programmed to amplify signal in one direction. Herein, based on mutual-activated cascade cycle of hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), a closed cycle circuit (CCC) based DNA machine is developed for sensitive logic operation and molecular recognition. Benefiting from the synergistically accelerated signal amplification, the closed cyclic DNA machine enabled the logic computing with strong and significant output signals even at weak input signals. The typical logic operations such as OR, YES, AND, INHIBIT, NOR, and NAND gate, are conveniently and clearly executed with this DNA machine through rational design of the input and computing elements. Moreover, by integrating the target recognition module with the CCC module, the proposed DNA machine is further employed in the homogeneous detection of apurinic/apyrimidinic endonuclease 1 (APE1). The precise recognition and exponential signal amplification facilitated the highly selective and sensitive detection of APE1 with limit of detection (LOD) of 7.8 × 10-5 U mL-1 . Besides, the normal cells and tumor cells are distinguished unambiguously by this method according to the detected concentration difference of cellular APE1, which indicates the robustness and practicability of this method.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , DNA , Nucleic Acid Hybridization , Logic , Limit of Detection
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122295, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36603277

ABSTRACT

Flap endonuclease 1 (FEN1) is overexpressed in various types of human tumor cells and has been recognized as a promising biomarker for cancer diagnosis in recent years. In this work, a label-free fluorescent nanosensor for FEN1 detection was developed based on cleavage-induced ligation of bifunctional dumbbell DNA and in-situ signal readout by copper nanoparticles (CuNPs). The dumbbell DNA was rationally designed with a FEN1 cleavable 5' flap for target recognition and AT-riched stem-loop template for CuNPs formation. In the presence of FEN1, 5' overhanging DNA flap of dumbbell DNA was effectively removed to form a linkable nick site. After the ligation by T4 DNA ligase, the dumbbell DNA changed to exonuclease-resisted closed structure which enabled in-situ generation of fluorescent CuNPs that served as signal source for target quantification. The low background attributed to synergic digestion by exonucleases facilitated the highly sensitive detection of FEN1 with limit of detection of 0.007 U/mL. Additionally, the sensor was extended to the assay of FEN1 inhibitor (aurintricarboxylic acid) with reasonable results. Last but not least, the normal cells and tumor cells were distinguished unambiguously by this sensor according to the detected concentration difference of cellular FEN1, which indicates the robustness and practicability of this nanosensor.


Subject(s)
Flap Endonucleases , Neoplasms , Humans , Flap Endonucleases/genetics , DNA/chemistry
9.
Nano Res ; 16(2): 2859-2865, 2023.
Article in English | MEDLINE | ID: mdl-36196429

ABSTRACT

Coronavirus disease 2019 (COVID-19) highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission. Here, we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles (NPs) for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N protein). The synthesis of Si-FITC NPs did not need post-modification, which addressed the issue of quantum yield reduction during the coupling reaction. Si-FITC NPs showed two distinct peaks, Si fluorescence at λ em = 385 nm and FITC fluorescence at λ em = 490 nm. In the presence of KMnO4, Si fluorescence was decreased and FITC fluorescence was enhanced. Briefly, in the presence of N protein, catalase (CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates. Subsequently, hydrogen peroxide (H2O2) and Si-FITC NPs/KMnO4 were injected into the microplate together. The decomposition of H2O2 by CAT resulted in remaining of KMnO4, which changed the fluorescence intensity ratio of Si-FITC NPs. The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL, and the detection limit was 0.003 ng/mL, which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL. The N protein concentration can be accurately determined in human serum. Furthermore, the COVID-19 and non-COVID-19 patients were distinguishable by this method. Therefore, the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR, HRXPS); stability investigation of Si-FITC NPs (photostability, pH stability, anti-interference ability); stability investigation of free FITC (pH value, KMnO4); quenching mechanism of KMnO4 (UV-vis absorption spectra, fluorescence lifetime decay curves); reaction condition optimization of biotin-CAT with H2O2 (pH value, temperature, time); detection of N protein using commercial ELISA Kit; selectivity investigation of assays for SARS-CoV-2 N protein detection; determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-5005-z.

10.
Nano Res ; 16(4): 5383-5390, 2023.
Article in English | MEDLINE | ID: mdl-35992363

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01-10.0 and 50-300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra); condition optimization of ALP response (fluorescence intensity ratio change); mechanism investigation of ALP response (fluorescence lifetime decay curves and UV-vis absorption spectra); detection of N protein using commercial ELISA Kit; analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection; and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

11.
Sens Actuators B Chem ; 369: 132306, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35813462

ABSTRACT

The continuing global spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, has led to an unprecedented global health crisis. Effective and affordable methods are needed to diagnose SARS-CoV-2 infection. In this work, a ratiometric fluorescence probe, Si-Mn:ZnSe nanoparticles, was constructed through the electrostatic interaction between Si dots and Mn:ZnSe QDs, and the fluorescence of Mn:ZnSe QDs has a specifical response to H2O2. An immunocomplex was formed by the recognition of capture antibody/spike (S) protein/spike neutralizing antibody/biotinylated second antibody/streptavidin/biotinylated catalase (CAT). In the presence of S protein, CAT effectively catalyzed the decomposition of H2O2 in the system, and the fluorescence of Mn:ZnSe QDs was not specifically quenched. Based on this principle, a ratiometric immunoassay of SARS-CoV-2 S protein was established. The sensitivity of the proposed ELISA method was comparable to that of the commercial kit. In addition, this method can effectively distinguish the pseudo-SARS-CoV-2 virus and other pseudovirus. Therefore, this method provided a reliable and potential direction for diagnosing SARS-CoV-2 infection.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121550, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35777229

ABSTRACT

Alkaline phosphatase (ALP) is an important biomarker associated with diabetes, liver dysfunction, bone diseases, and breast cancer. Here we developed a method based on synergetic fluorescence recovery for the sensitive detection of ALP. Cadmium-zinc-selenium (CdZnSe) quantum dots (QDs) were prepared by one-pot water bath method without any complicated and rigorous conditions. CdZnSe QDs displayed high luminous efficiency, good stability, and good biocompatibility. KMnO4 and ascorbic acid phosphate (AAP) can dynamically quench the fluorescence of CdZnSe QDs. Ascorbic acid, produced by ALP-catalyzed hydrolysis of AAP, reacted with KMnO4, causing the synergetic fluorescence recovery of CdZnSe QDs. The synergetic recovery efficiency correlates well with the logarithmic ALP concentration in the range of 2.5-250 U/L with a detection limit of 0.21 U/L. In addition, good recoveries were obtained in the detection of ALP in human serum. This method provided a new research idea to improve the detection sensitivity and selectivity of ALP detection.


Subject(s)
Alkaline Phosphatase , Quantum Dots , Ascorbic Acid , Fluorescence , Humans , Limit of Detection , Spectrometry, Fluorescence/methods , Zinc
13.
J Mater Chem B ; 10(23): 4473-4478, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35612558

ABSTRACT

With the prevalence of diabetes, rapid and simple blood glucose monitoring has become more and more important. Here, we report the synthesis of bio-templated N3-CdZnTeS quantum dots (QDs), which are great fluorescent biological labels and were used for the fabrication of dual-emissive dye@protein-QD conjugates via copper-free click chemistry, such as the 5(6)-carboxyfluorescein@glucose oxidase-quantum dot (FAM@GOx-QDs) complex. When adding glucose, the red fluorescence of the CdZnTeS QDs sharply decreased, while the green fluorescence of FAM was invariable. A good linear relationship ranging from 0.3 to 30 µM was obtained for glucose detection, with the limit of detection as low as 0.035 µM. Notably, the DNA-bridging FAM@GOx-QDs complex exhibited enhanced enzyme activity and stability, and was applied for the differentiation of diabetic and healthy people by the naked eye.


Subject(s)
Quantum Dots , Blood Glucose , Blood Glucose Self-Monitoring , Glucose , Humans , Spectrometry, Fluorescence
15.
Anal Chem ; 94(18): 6665-6671, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35466670

ABSTRACT

Intracellular pH is an important regulator of cell function, and its subtle changes may greatly affect cell activities and cause diseases. Reliable imaging of intracellular pH remains a huge challenge. Dual-emitting Mn2+-doped quantum dots (QDs) can be directly used as a ratiometric fluorescent probe without further modification, but they displayed low performance in terms of photoluminescence, stability, and intensity ratio regulation. Here, we report intrinsic dual-emitting CdZnSe/Mn:ZnS QDs with high photoluminescence efficiency, good stability, and biocompatibility. The emission intensity ratio was selectively regulated by Mn2+ doping. Because of aggregation-induced quenching of QDs, the exciton emission of CdZnSe/Mn:ZnS QDs (471 nm) was sensitive to pH, while the Mn2+-doped emission (606 nm) was passive to pH, which was probably due to little self-quenching in Mn2+-doped emission caused by weak Mn-Mn coupling interaction. Dual-emitting CdZnSe/Mn:ZnS QDs exhibited excellent pH-responsiveness in the range of pH 4.0 to 12.0 and were used for pH imaging in live HeLa cells. When the pH value of HeLa cells changed from 5.0 to 9.0, the emission changed from red to blue. Furthermore, these dual-emitting CdZnSe/Mn:ZnS QDs can provide a versatile platform for biosensors and biological imaging.


Subject(s)
Quantum Dots , HeLa Cells , Humans , Hydrogen-Ion Concentration , Manganese , Quantum Dots/toxicity , Sulfides , Zinc Compounds
16.
Anal Chem ; 94(5): 2648-2654, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35080851

ABSTRACT

Reverse transcription uses the reverse transcriptase enzyme to synthesize deoxyribonucleic acid (DNA) from a ribonucleic acid (RNA) template. This plays an essential role in viral replication. There are still, however, many unknown facts regarding the timing and dynamic processes involved in this life stage. Here, three types of dual-fluorescence human immunodeficiency virus type-1 (HIV-1) particles were constructed with high infectivity, and the sequential process of reverse transcription was observed by real-time imaging of a single HIV-1 particle. Viral uncoating occurred at 60-120 min post infection. Subsequently, at 120-180 min post infection, the viral genome was separated into two parts and reverse-transcribed to generate a DNA product. Nevirapine (NVP), a reverse transcriptase inhibitor, can delay the dynamic process. This study revealed a delicate, sequential, and complex relationship between uncoating and reverse transcription, which may facilitate the development of antiviral drugs.


Subject(s)
HIV Infections , HIV-1 , Single Molecule Imaging , Virus Replication , Virus Uncoating , HIV Infections/genetics , HIV Infections/physiopathology , HIV Infections/virology , HIV Reverse Transcriptase/physiology , HIV-1/physiology , Humans , Reverse Transcription/physiology , Single Molecule Imaging/methods , Virus Replication/physiology , Virus Uncoating/physiology
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120410, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34601367

ABSTRACT

In this work, an environmentally-friendly and cost-effective enzyme mimic was obtained by facile one-pot preparation of chitosan/Cu/Fe (CS/Cu/Fe) composite. This composite exhibited significantly enhanced oxidase-mimicking activity during catalyzing the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB). The CS/Cu/Fe composite was comprehensively characterized and the possible catalytic mechanism was reasonably explored and discussed. Benefiting from the thermal stability and the compatibility with carbohydrate, the CS/Cu/Fe composite was further integrated with agarose hydrogel to fabricate a portable analytical tube containing oxidase mimic. Based on the inhibition of the catalytic oxidation of TMB in the presence of cysteine, as well as the recovery of oxidase-like activity of CS/Cu/Fe due to the specific complexation of cysteine and mercury ion (Hg2+), the rapid colorimetric detection of Hg2+ was successfully carried out in the analytical tube. This colorimetric method showed good linear response to Hg2+ over the range from 40 nM to 8.0 µM with a detection limit of 8.9 nM. The method also revealed high selectivity and satisfactory results in recovery experiments of Hg2+ detection in tap water and lake water. Furthermore, it was found that the effective removal of Hg2+ could be realized in the analytical tube based on efficient Hg2+ adsorption by CS/Cu/Fe composite and agarose hydrogel. This study not only prepared a robust and low-cost enzyme mimic, but also proposed a smart strategy to simultaneously monitor and remove toxic Hg2+ from contaminated water.


Subject(s)
Chitosan , Mercury , Adsorption , Catalysis , Colorimetry
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120102, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34198116

ABSTRACT

In this work, an environmentally-friendly and versatile nanobeacon was constructed by utilizing DNA-templated copper nanoparticles (CuNPs) as fluorescence signal source. As the key component of the nanobeacon, a hairpin DNA was designed to contain four segments: two segments for CuNPs template sequence, a target recognition segment and a blocking segment. At room temperature, the target recognition segment partly hybridizes with the blocking segment and thus prohibits the formation of double stranded DNA template, so that no CuNPs can be generated on the hairpin DNA. While a target is introduced, the specific binding of target with recognition sequence triggers off the conformational transformation of the hairpin DNA, which contributes to the formation of the CuNPs template. As a result, the in-situ generation of CuNPs gives birth to the fluorescence signal readout that can be used to identify the target. By reasonably varying the recognition sequence within hairpin DNA, a series of nanobeacons in response to corresponding targets, such as DNA, microRNA, thrombin, and ATP, were put forward with satisfactory sensitivity and selectivity. Moreover, this nanobeacon was also integrated with the strategy of enzyme-assisted target-recycling to realize signal amplification and ultrasensitive detection, which further demonstrated the versatility of the nanobeacon. This novel nanobeacon is expected to be a promising alternative to classical dye-labeled molecular beacon and provide new perspective on ultrasensitive fluorescence sensing.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Copper , DNA , Fluorescent Dyes , Spectrometry, Fluorescence , Thrombin
19.
ACS Appl Mater Interfaces ; 13(21): 24477-24486, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33961399

ABSTRACT

The pseudovirus strategy makes studies of highly pathogenic viruses feasible without the restriction of high-level biosafety facility, thus greatly contributing to virology and is used in the research studies of SARS-CoV-2. Here, we generated a dual-color pseudo-SARS-CoV-2 virus using a human immunodeficiency virus-1 pseudovirus production system and the SARS-CoV-2 spike (S) glycoprotein, of which the membrane was labeled with a lipophilic dye (DiO) and the genomic RNA-related viral protein R (Vpr) of the viral core was fused with mCherry. With this dual-color labeling strategy, not only the movement of the whole virus but also the fate of the labeled components can be traced. The pseudovirions were applied to track the viral entry at a single-particle level in four types of the human respiratory cells: nasal epithelial cells (HNEpC), pulmonary alveolar epithelial cells (HPAEpiC), bronchial epithelial cells (BEP-2D), and oral epithelial cells (HOEC). Pseudo-SARS-CoV-2 entered into the host cell and released the viral core into the cytoplasm, which clearly indicates that the host entry mainly occurred through endocytosis. The infection efficiency was found to be correlated with the expression of the known receptor of SARS-CoV-2, angiotensin-converting 2 (ACE2) on the host cell surface. We believe that the dual-color fluorescently labeled pseudovirus system created in this study can be applied as a useful tool for many purposes in SARS-CoV-2/COVID-19.


Subject(s)
Fluorescent Dyes/chemistry , Pulmonary Alveoli/virology , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Epithelial Cells/virology , Fluorescence , HEK293 Cells , HIV-1/genetics , Humans , Nasal Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
20.
ACS Appl Mater Interfaces ; 13(7): 7890-7896, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33513005

ABSTRACT

Nanodrug delivery systems are very promising for highly efficient anticancer drug delivery. However, the present nanosystems are commonly located in the cytoplasm and mediate uncontrolled release of drugs into cytosol, while a large number of anticancer drugs function more efficiently inside the nucleus. Here, we constructed a CRISPR-dCas9-guided and telomerase-responsive nanosystem for nuclear targeting and smart release of anticancer drugs. CRISPR-dCas9 technology has been employed to achieve conjugation of mesoporous silica nanoparticles (MSNs) with a high payload of the active anticancer drug, doxorubicin (DOX). A specifically designed wrapping DNA was used as a telomerase-responsive biogate to encapsulate DOX within MSNs. The wrapping DNA is extended in the presence of telomerase, which is highly activated in tumor cells, but not in normal cells. The extended DNA sequence forms a rigid hairpin-like structure and diffuses away from the MSN surface. CRISPR-dCas9 specifically targets telomere-repetitive sequences at the tips of chromosomes, facilitating the precise delivery of the nanosystem to the nucleus, and effective drug release triggered by telomerase that was enriched around telomeric repeats. This study provides a strategy and nanosystem for nuclear-targeted delivery and tumor-specific release of anticancer drugs that will maximize the efficiency of cancer cell destruction.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , CRISPR-Associated Protein 9/chemistry , Doxorubicin/pharmacology , Drug Delivery Systems , Nanoparticles/chemistry , Telomerase/chemistry , Antibiotics, Antineoplastic/chemistry , CRISPR-Associated Protein 9/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Molecular Structure , Nanoparticles/metabolism , Optical Imaging , Particle Size , Porosity , Surface Properties , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...