Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Blood Adv ; 8(2): 429-440, 2024 01 23.
Article in English | MEDLINE | ID: mdl-37871309

ABSTRACT

ABSTRACT: Enasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine. The phase 2 portion assessing the overall response to ENA alone demonstrated efficacy, with a composite complete response (cCR) rate (CR/CRi) of 46% in 60 evaluable patients. Seventeen patients subsequently transitioned to phase 1b combination therapy, with a cCR rate of 41% and 1 dose-limiting toxicity. Correlative studies highlight mechanisms of clonal elimination with differentiation therapy as well as therapeutic resistance. This study demonstrates both efficacy of ENA monotherapy in the upfront setting and feasibility and applicability of a risk-adapted approach to the upfront treatment of IDH2-mutant AML. This trial is registered at www.clinicaltrials.gov as #NCT03013998.


Subject(s)
Aminopyridines , Azacitidine , Leukemia, Myeloid, Acute , Triazines , Humans , Azacitidine/adverse effects , Isocitrate Dehydrogenase/genetics , Mutation , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Pathologic Complete Response
2.
Mol Ther ; 27(5): 922-932, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30833178

ABSTRACT

IL-15 is a proinflammatory cytokine that plays an essential role in the development and activation of natural killer (NK) cells. Adipose tissue acts as an endocrine organ that secretes cytokines and is an important reservoir for lymphocytes. We hypothesized that activation of the IL-15 signaling in adipose tissue will activate and expand the NK cell population and control tumor growth. We recently developed an adipocyte-targeting recombinant adeno-associated viral (rAAV) vector with minimal off-target transgene expression in the liver. Here, we used this rAAV system to deliver an IL-15/IL-15Rα complex to the abdominal fat by intraperitoneal (i.p.) injection. Adipose IL-15/IL-15Rα complex gene transfer led to the expansion of NK cells in the adipose tissue and spleen in normal mice without notable side effects. The i.p. injection of rAAV-IL-15/IL-15Rα complex significantly suppressed the growth of Lewis lung carcinoma implanted subcutaneously and exerted a significant survival advantage in a B16-F10 melanoma metastasis model. The antitumor effects were associated with the expansion of the NK cells in the blood, spleen, abdominal fat, and tumor, as well as the enhancement of NK cell maturity. Our proof-of-concept preclinical studies demonstrate the safety and efficacy of the adipocyte-specific IL-15/IL-15Rα complex vector as a novel cancer immune gene therapy.


Subject(s)
Genetic Therapy , Interleukin-15 Receptor alpha Subunit/genetics , Interleukin-15/pharmacology , Neoplasms/therapy , Abdominal Fat/drug effects , Abdominal Fat/immunology , Adipocytes/drug effects , Adipocytes/immunology , Adipocytes/metabolism , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/therapy , Cell Proliferation/genetics , Dependovirus , Gene Expression Regulation, Neoplastic/drug effects , Genetic Vectors/pharmacology , Humans , Interleukin-15/genetics , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Liver/drug effects , Liver/immunology , Liver/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Signal Transduction/genetics
3.
Immunity ; 49(3): 464-476.e4, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30193847

ABSTRACT

According to the established model of murine innate lymphoid cell (ILC) development, helper ILCs develop separately from natural killer (NK) cells. However, it is unclear how helper ILCs and NK cells develop in humans. Here we elucidated key steps of NK cell, ILC2, and ILC3 development within human tonsils using ex vivo molecular and functional profiling and lineage differentiation assays. We demonstrated that while tonsillar NK cells, ILC2s, and ILC3s originated from a common CD34-CD117+ ILC precursor pool, final steps of ILC2 development deviated independently and became mutually exclusive from those of NK cells and ILC3s, whose developmental pathways overlapped. Moreover, we identified a CD34-CD117+ ILC precursor population that expressed CD56 and gave rise to NK cells and ILC3s but not to ILC2s. These data support a model of human ILC development distinct from the mouse, whereby human NK cells and ILC3s share a common developmental pathway separate from ILC2s.


Subject(s)
Killer Cells, Natural/immunology , Lymphocytes/immunology , Palatine Tonsil/immunology , Animals , Antigens, CD34/metabolism , CD56 Antigen/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Gene Expression Profiling , Humans , Immunity, Innate , Lymphocyte Activation , Mice , Proto-Oncogene Proteins c-kit/metabolism
5.
Immunity ; 47(1): 159-170.e10, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723548

ABSTRACT

Clearance of pathogens or tumor cells by antibodies traditionally requires both Fab and Fc domains of IgG. Here, we show the Fc domain of IgG alone mediates recognition and clearance of herpes simplex virus (HSV1)-infected cells. The human natural killer (NK) cell surface is naturally coated with IgG bound by its Fc domain to the Fcγ receptor CD16a. NK cells utilize the Fc domain of bound IgG to recognize gE, an HSV1-encoded glycoprotein that also binds the Fc domain of IgG but at a site distinct from CD16a. The bridge formed by the Fc domain between the HSV1-infected cell and the NK cell results in NK cell activation and lysis of the HSV1-infected cell in the absence of HSV1-specific antibody in vitro and prevents fatal HSV1 infection in vivo. This mechanism also explains how bacterial IgG-binding proteins regulate NK cell function and may be broadly applicable to Fcγ-receptor-bearing cells.


Subject(s)
Antibodies, Viral/metabolism , Herpes Simplex/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Killer Cells, Natural/immunology , Simplexvirus/immunology , Animals , Antibodies, Viral/immunology , Cells, Cultured , Cytotoxicity, Immunologic , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Receptor Aggregation , Receptors, IgG/metabolism , Signal Transduction , Viral Proteins/immunology
6.
J Clin Invest ; 126(12): 4404-4416, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27775550

ABSTRACT

Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell-depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer.


Subject(s)
Immunity, Innate , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , MicroRNAs/immunology , RNA, Neoplasm/immunology , Tumor Escape , Animals , Cell Line, Tumor , Granzymes/genetics , Granzymes/immunology , Humans , Killer Cells, Natural/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Transgenic , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Perforin/genetics , Perforin/immunology , RNA, Neoplasm/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology
7.
Immunity ; 44(5): 1140-50, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27178467

ABSTRACT

The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development.


Subject(s)
Killer Cells, Natural/physiology , Lymph Nodes/immunology , Lymphocyte Subsets/physiology , Lymphoid Progenitor Cells/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Palatine Tonsil/immunology , Adult , Animals , Antigens, CD34/metabolism , Cell Differentiation , Cell Line , Child , Gene Expression Regulation , Humans , Immunity, Innate , Leukocyte Common Antigens/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
8.
Immunity ; 42(3): 457-70, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25769609

ABSTRACT

Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes by upregulating CD62L expression and inhibited late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21(+/-) mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions.


Subject(s)
Forkhead Transcription Factors/immunology , Gene Expression Regulation, Neoplastic , Killer Cells, Natural/immunology , Lung Neoplasms/genetics , Melanoma, Experimental/genetics , Skin Neoplasms/genetics , T-Box Domain Proteins/immunology , Animals , Cell Differentiation , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Heterozygote , Killer Cells, Natural/pathology , L-Selectin/genetics , L-Selectin/immunology , Lung/immunology , Lung/pathology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphocyte Depletion , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Knockout , Neoplasm Transplantation , Signal Transduction , Skin Neoplasms/immunology , Skin Neoplasms/secondary , T-Box Domain Proteins/genetics
9.
Mol Ther ; 22(9): 1678-87, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24895995

ABSTRACT

Glioblastoma is a devastating disease, and there is an urgent need to develop novel therapies, such as oncolytic HSV1 (OV) to effectively target tumor cells. OV therapy depends on tumor-specific replication leading to destruction of neoplastic tissues. Host responses that curtail virus replication limit its efficacy in vivo. We have previously shown that cysteine-rich 61 protein (CCN1) activates a type 1 IFN antiviral defense response in glioblastoma cells. Incorporating TCGA data, we found CCN1 expression to be a negative prognostic factor for glioblastoma patients. Based on this, we used neutralizing antibodies against CCN1 to investigate its effect on OV therapy. Use of an anti-CCN1 antibody in mice bearing glioblastomas treated with OV led to enhanced virus expression along with reduced immune cell infiltration. OV-induced CCN1 increases macrophage migration toward infected glioblastoma cells by directly binding macrophages and also by enhancing the proinflammatory activation of macrophages inducing MCP-1 expression in glioblastoma cells. Activation of macrophages by CCN1 also increases viral clearance. Neutralization of integrin αMß2 reversed CCN1-induced macrophage activation and migration, and reduced MCP-1 expression by glioblastoma cells. Our findings reveal that CCN1 plays a novel role in pathogen clearance; increasing macrophage infiltration and activation resulting in increased virus clearance in tumors.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Cysteine-Rich Protein 61/genetics , Cysteine-Rich Protein 61/metabolism , Glioblastoma/immunology , Herpesvirus 1, Human/genetics , Macrophages/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Chemokine CCL2/metabolism , Female , Genetic Vectors/administration & dosage , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Macrophage Activation , Mice , Neoplasm Transplantation , Oncolytic Viruses/genetics
10.
Mol Cancer Res ; 12(5): 784-94, 2014 May.
Article in English | MEDLINE | ID: mdl-24574518

ABSTRACT

UNLABELLED: Ovarian cancer is an extremely aggressive disease associated with a high percentage of tumor recurrence and chemotherapy resistance. Understanding the underlying mechanism of tumor relapse is crucial for effective therapy of ovarian cancer. DNA damage-binding protein 2 (DDB2) is a DNA repair factor mainly involved in nucleotide excision repair. Here, a novel role was identified for DDB2 in the tumorigenesis of ovarian cancer cells and the prognosis of patients with ovarian cancer. Overexpressing DDB2 in human ovarian cancer cells suppressed its capability to recapitulate tumors in athymic nude mice. Mechanistic investigation demonstrated that DDB2 is able to reduce the cancer stem cell (CSC) population characterized with high aldehyde dehydrogenase activity in ovarian cancer cells, probably through disrupting the self-renewal capacity of CSCs. Low DDB2 expression correlates with poor outcomes among patients with ovarian cancer, as revealed from the analysis of publicly available gene expression array datasets. Given the finding that DDB2 protein expression is low in ovarian tumor cells, enhancement of DDB2 expression is a promising strategy to eradicate CSCs and would help to halt ovarian cancer relapse. IMPLICATIONS: DDB2 status has prognostic potential, and elevating its expression eradicates CSCs and could reduce ovarian cancer relapse.


Subject(s)
DNA-Binding Proteins/biosynthesis , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/pathology , Animals , Carcinogenesis/pathology , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Heterografts , Humans , Immunohistochemistry , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Tissue Array Analysis , Transfection
11.
J Clin Invest ; 123(10): 4144-57, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23999433

ABSTRACT

The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase-independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression--but not activity--of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/ß-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase-independent and PP2A-mediated inhibition of JAK2 and ß-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1-positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/ß-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Phosphatase 2/metabolism , Animals , Apoptosis , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm , Enzyme Activators/pharmacology , Fingolimod Hydrochloride , Fusion Proteins, bcr-abl/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/enzymology , Humans , Janus Kinase 2/metabolism , K562 Cells , Mice , Mice, Transgenic , Neoplastic Stem Cells/enzymology , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , beta Catenin/metabolism
12.
Blood ; 121(23): 4663-71, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23580661

ABSTRACT

MicroRNAs (miRNAs) bind to complementary sequences of target mRNAs, resulting in translational repression or target degradation and thus gene silencing. miRNAs are abundant in circulating blood, yet it is not known whether, as a class of regulatory molecules, they interact with human natural killer (NK) cells. Here we found that the treatment of human NK cells with several mature miRNAs in the presence of a low concentration of interleukin-12 induced CD69 expression, interferon-γ production, and degranulation marker CD107a expression. In vivo, infusion of several miRNAs alone in murine peripheral blood also resulted in comparable NK-cell activation, but not T-cell activation. Furthermore, miRNA administration significantly protected mice from tumor development in an NK cell-dependent manner. Mechanistically, we found that miRNA stimulation led to downstream activation of nuclear factor κB (NF-κB), an effect that was blunted by a block in Toll-like receptor 1(TLR1) signaling and attenuated in lymphoma patients. Knockdown of TLR1 resulted in less activation by miRNAs. Collectively, we show that miRNAs have a capacity to selectively activate innate immune effector cells that is, at least in part, via the TLR1-NF-κB signaling pathway. This may be important in the normal host defense against infection and/or malignant transformation.


Subject(s)
Killer Cells, Natural/immunology , Lymphoma/prevention & control , MicroRNAs/genetics , Spleen/immunology , Toll-Like Receptors/metabolism , Animals , Blotting, Western , Cells, Cultured , Flow Cytometry , Humans , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-12/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Lymphocyte Activation , Lymphoma/genetics , Lymphoma/immunology , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Spleen/metabolism , Spleen/pathology , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/genetics
13.
Nat Med ; 18(12): 1827-34, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23178246

ABSTRACT

The role of the immune response to oncolytic Herpes simplex viral (oHSV) therapy for glioblastoma is controversial because it might enhance or inhibit efficacy. We found that within hours of oHSV infection of glioblastomas in mice, activated natural killer (NK) cells are recruited to the site of infection. This response substantially diminished the efficacy of glioblastoma virotherapy. oHSV-activated NK cells coordinated macrophage and microglia activation within tumors. In vitro, human NK cells preferentially lysed oHSV-infected human glioblastoma cell lines. This enhanced killing depended on the NK cell natural cytotoxicity receptors (NCRs) NKp30 and NKp46, whose ligands are upregulated in oHSV-infected glioblastoma cells. We found that HSV titers and oHSV efficacy are increased in Ncr1(-/-) mice and a Ncr1(-/-) NK cell adoptive transfer model of glioma, respectively. These results demonstrate that glioblastoma virotherapy is limited partially by an antiviral NK cell response involving specific NCRs, uncovering new potential targets to enhance cancer virotherapy.


Subject(s)
Glioblastoma/drug therapy , Killer Cells, Natural/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Cytotoxicity Triggering Receptor 3/metabolism , Oncolytic Virotherapy/methods , Simplexvirus , Adoptive Transfer , Analysis of Variance , Animals , Antigens, Ly/genetics , Cell Line, Tumor , Chlorocebus aethiops , DNA Primers/genetics , Flow Cytometry , Glioblastoma/immunology , Humans , Mice , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Vero Cells
14.
J Clin Invest ; 122(8): 2871-83, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22820288

ABSTRACT

miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.


Subject(s)
Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , 3' Untranslated Regions , Animals , Base Sequence , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Proliferation , Cell Survival/genetics , Cytokines/biosynthesis , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression , Genes, Tumor Suppressor , Genes, myc , Humans , Lipid Metabolism/genetics , Lipids/blood , Liver/immunology , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Liver Neoplasms, Experimental/etiology , Mice , Mice, 129 Strain , Mice, Knockout , MicroRNAs/antagonists & inhibitors , MicroRNAs/therapeutic use , Monocytes/immunology , Monocytes/pathology , Neutrophils/immunology , Neutrophils/pathology , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
15.
J Clin Invest ; 121(4): 1456-70, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21364281

ABSTRACT

IL-15 may have a role in the development of T cell large granular lymphocyte (T-LGL) or NKT leukemias. However, the mechanisms of action and the identity of the cell subset that undergoes leukemic transformation remain elusive. Here we show that in both mice and humans, NKp46 expression marks a minute population of WT NKT cells with higher activity and potency to become leukemic. Virtually 100% of T-LGL leukemias in IL-15 transgenic mice expressed NKp46, as did a majority of human T-LGL leukemias. The minute NKp46+ NKT population, but not the NKp46⁻ NKT population, was selectively expanded by overexpression of endogenous IL-15. Importantly, IL-15 transgenic NKp46⁻ NKT cells did not become NKp46+ in vivo, suggesting that NKp46+ T-LGL leukemia cells were the malignant counterpart of the minute WT NKp46+ NKT population. Mechanistically, NKp46+ NKT cells possessed higher responsiveness to IL-15 in vitro and in vivo compared with that of their NKp46⁻ NKT counterparts. Furthermore, interruption of IL-15 signaling using a neutralizing antibody could prevent LGL leukemia in IL-15 transgenic mice. Collectively, our data demonstrate that NKp46 identifies a functionally distinct NKT subset in mice and humans that appears to be directly susceptible to leukemic transformation when IL-15 is overexpressed. Thus, IL-15 signaling and NKp46 may be useful targets in the treatment of patients with T-LGL or NKT leukemia.


Subject(s)
Antigens, Ly/metabolism , Cell Transformation, Neoplastic/immunology , Leukemia, Large Granular Lymphocytic/etiology , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Killer T-Cells/immunology , T-Lymphocyte Subsets/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antigens, Ly/genetics , Cell Transformation, Neoplastic/genetics , Humans , Interleukin-15/genetics , Interleukin-15/metabolism , Interleukin-2 Receptor beta Subunit/antagonists & inhibitors , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/immunology , Leukemia, Large Granular Lymphocytic/therapy , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Natural Cytotoxicity Triggering Receptor 1/genetics , Natural Killer T-Cells/classification , Signal Transduction/immunology , T-Lymphocyte Subsets/classification
16.
Blood ; 117(8): 2378-84, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21156847

ABSTRACT

The ability of natural killer (NK) cells to kill malignant or infected cells depends on the integration of signals from different families of cell surface receptors, including cytokine receptors. How such signals then regulate NK-cell cytotoxicity is incompletely understood. Here we analyzed an endogenous inhibitor of protein phosphatase 2A (PP2A) activity called SET, and its role in regulating human NK-cell cytotoxicity and its mechanism of action in human NK cells. RNAi-mediated suppression of SET down-modulates NK-cell cytotoxicity, whereas ectopic overexpression of SET enhances cytotoxicity. SET knockdown inhibits both mRNA and protein granzyme B expression, as well as perforin expression, whereas SET overexpression enhances granzyme B expression. Treatment of NK cells with the PP2A activator 1,9-dideoxy-forskolin also inhibits both granzyme B expression and cytotoxicity. In addition, pretreatment with the PP2A inhibitor okadaic acid rescues declining granzyme B mRNA levels in SET knockdown cells. Down-modulation of SET expression or activation of PP2A also decreases human NK-cell antibody-dependent cellular cytotoxicity. Finally, the induction of granzyme B gene expression by interleukin-2 and interleukin-15 is inhibited by SET knockdown. These data provide evidence that granzyme B gene expression and therefore human NK-cell cytotoxicity can be regulated by the PP2A-SET interplay.


Subject(s)
Granzymes/genetics , Histone Chaperones/physiology , Killer Cells, Natural/metabolism , Protein Phosphatase 2/physiology , Transcription Factors/physiology , Cytotoxicity, Immunologic , DNA-Binding Proteins , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Granzymes/biosynthesis , Humans , Killer Cells, Natural/immunology , Protein Phosphatase 2/antagonists & inhibitors , RNA, Small Interfering/pharmacology
17.
J Immunol ; 184(6): 2769-75, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20142363

ABSTRACT

IL-15 is required for NK cell development and homeostasis in vivo. Because IL-15 is presented in trans via its high-affinity IL-15Ralpha-chain to cells expressing the IL-15Rbetagamma complex, we postulated that certain IL-15-bearing cells must be required for NK cell homeostasis. Using IL-15(WT/WT) and IL-15(-/-) mice, bone marrow chimeras with normal cellularity, and a selective depletion of CD11c(hi) dendritic cells (DCs), we demonstrate that ablation of the resting CD11c(hi) DC population results in a highly significant decrease in the absolute number of mature NK cells. In contrast, administration of Flt3 ligand increases the CD11c(hi) DC population, which, when expressing IL-15, significantly expands mature NK cells via enhanced survival and proliferation. In summary, a CD11c(hi) DC population expressing IL-15 is required to maintain NK cell homeostasis under conditions of normal cellularity and also is required to mediate Flt3 ligand-induced NK cell expansion in vivo.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Homeostasis/immunology , Killer Cells, Natural/cytology , Membrane Proteins/physiology , Animals , CD11c Antigen/biosynthesis , Cell Differentiation/immunology , Cell Proliferation , Cell Survival/immunology , Female , Humans , Interleukin-15/deficiency , Interleukin-15/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Ligands , Membrane Proteins/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Recombinant Proteins/administration & dosage
18.
Leuk Res ; 34(2): 203-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19660811

ABSTRACT

Murine models of disease are vital to the understanding of pathogenesis and the development of novel therapeutics. We have previously established interleukin (IL)-15 transgenic (tg) mice that demonstrate rapid proliferation of natural killer (NK) and T cells, followed by spontaneous transformation to lethal leukemia. Herein, we have characterized this model, which has many features in common with the aggressive variants of NK and T large granular lymphocyte leukemia (LGLL) in humans. The LGLL blasts are cytolytic and produce IFN-gammaex vivo. Cytogenetic analysis revealed trisomy of chromosome 17 and/or 15. This model should provide opportunities to develop effective standard therapies for this fatal disease.


Subject(s)
Disease Models, Animal , Leukemia, Large Granular Lymphocytic/pathology , Animals , Blast Crisis , Cell Proliferation , Chromosomes, Mammalian , Interferon-gamma/biosynthesis , Interleukin-15/genetics , Killer Cells, Natural/pathology , Leukemia, Large Granular Lymphocytic/genetics , Mice , Mice, Transgenic , Phenotype , T-Lymphocytes/pathology , Trisomy
19.
Blood ; 115(2): 274-81, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19897577

ABSTRACT

Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.


Subject(s)
CD56 Antigen/immunology , Cell Differentiation/immunology , Gene Expression Regulation/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , NK Cell Lectin-Like Receptor Subfamily D/immunology , Cells, Cultured , Humans , Interferon-gamma/immunology , Interleukin-12/immunology , Killer Cells, Natural/cytology , L-Selectin/immunology , Lymphocyte Subsets/cytology , Phosphorylation/immunology , STAT4 Transcription Factor/immunology
20.
J Immunol ; 183(8): 4968-74, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19801519

ABSTRACT

Understanding of heterogeneous NK subsets is important for the study of NK cell biology and development, and for the application of NK cell-based therapies in the treatment of disease. Here we demonstrate that the surface expression of CD94 can distinctively divide mouse NK cells into two approximately even CD94(low) and CD94(high) subsets in all tested organs and tissues. The CD94(high) NK subset has significantly greater capacity to proliferate, produce IFN-gamma, and lyse target cells than does the CD94(low) subset. The CD94(high) subset has exclusive expression of NKG2A/C/E, higher expression of CD117 and CD69, and lower expression of Ly49D (activating) and Ly49G2 (inhibitory). In vivo, purified mouse CD94(low) NK cells become CD94(high) NK cells, but not vice versa. Collectively, our data suggest that CD94 is an Ag that can be used to identify functionally distinct NK cell subsets in mice and could also be relevant to late-stage mouse NK cell development.


Subject(s)
Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , NK Cell Lectin-Like Receptor Subfamily D/immunology , Adoptive Transfer , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Female , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Lectins, C-Type , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily A/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Proto-Oncogene Proteins c-kit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...