Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38541510

ABSTRACT

Thermally induced pores (TIPs) are generally the source of fatigue crack initiation in the powder metallurgy (PM) Ni-based FGH96 superalloy. The effect of TIPs on fatigue crack initiation on the surface of the FGH96 superalloy was detected using scanning electron microscopy (SEM). The cause of fatigue crack deflection was studied using electron backscatter diffraction (EBSD) analysis. The results indicated that there are two states of TIPs including isolated TIPs and clustered TIPs located at the grain boundary. The investigation of crack initiation and propagation around TIPs was conducted in detail through the comprehensive integration of experimental findings and computational results. For cracks initiated by isolated TIPs, the maximum equivalent size and the ratio of the vertical-parallel axis to the loading direction of the TIPs reveal a linear relationship, and both of them determine crack initiation. Regarding clustered TIPs, the constituent pores of the clustered TIPs will compete to initiate cracks based on the experimental results, and the largest pore will be more likely to initiate cracking. Moreover, the results showed that fatigue crack propagation can be hindered by hard-orientation grains and twins with a low Schmid factor (SF). Large-angle crack deflection due to twins with a low SF can significantly increase crack length and resistance to crack propagation.

2.
Materials (Basel) ; 15(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35057367

ABSTRACT

The creep-fatigue crack growth problem remains challenging since materials exhibit different linear and nonlinear behaviors depending on the environmental and loading conditions. In this paper, we systematically carried out a series of creep-fatigue crack growth experiments to evaluate the influence from temperature, stress ratio, and dwell time for the nickel-based superalloy GH4720Li. A transition from coupled fatigue-dominated fracture to creep-dominated fracture was observed with the increase of dwell time at 600 °C, while only the creep-dominated fracture existed at 700 °C, regardless of the dwell time. A concise binomial crack growth model was constructed on the basis of existing phenomenal models, where the linear terms are included to express the behavior under pure creep loading, and the nonlinear terms were introduced to represent the behavior near the fracture toughness and during the creep-fatigue interaction. Through the model implementation and validation of the proposed model, the correlation coefficient is higher than 0.9 on ten out of twelve sets of experimental data, revealing the accuracy of the proposed model. This work contributes to an enrichment of creep-fatigue crack growth data in the typical nickel-based superalloy at elevated temperatures and could be referable in the modeling for damage tolerance assessment of turbine disks.

SELECTION OF CITATIONS
SEARCH DETAIL
...